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Search problems in Nlp

Nowadays, most algorithms in computational linguistics assume
weighted formalisms: weighted finite state automata/transducers,
weighted grammars, weighted tree transducers. . .

Weights are provided by some statistical estimation procedure
(generally borrowed from Machine learning) as e.g. :

Maximum likelihood estimation
Perceptron
Logistic regression
Support Vector Machines

Instead of computing every possible solution, we prefer to search
for a best or k-best solutions in the space of solutions.

Review of some classical search problems

Many Nlp problems can be cast as search problems in Directed
Acyclic Graphs (Dags) or Directed Acyclic Hypergraphs (Dahs)
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Part of speech tagging

The part of speech tagging problem

Consider the sentences:
1 La belle porte le voile
2 La belle porte le chapeau

(1) is ambiguous while (2) is not.

Part of speech tagging will try to select a preferred reading among
possible labellings in order to provide a preferred analysis among
e.g.:

La/D belle/N porte/V le/D voile/V
La/D belle/A porte /N le/Cl voile/V

Part of speech tagging, does not try to provide an analysis of the
context in which the sentence is uttered in order to choose a
preferred alternative (at least in what is usually done), instead it
provides a best alternative provided previous experience.
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Part of speech tagging

Part of speech tagging as supervised learning problem

In what follows, I suppose we have a corpus (or list of
observations) of pairs of sequence of words and correct categories,
where each observation is of the form:

fw = w1 : : : wn; c = c1 : : : cng

The corpus can be used to count and estimate weights for some
statistical model (learning task).

Part of speech tagging amounts to predict a labelling (sequence of
categories ĉ = c1 : : : cn) on new observations (prediction task)

In what follows I focus on the prediction task: I assume sequences with
higher weight to be preferred.
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Part of speech tagging

Part of speech tagging as a search problem

The problem of part of speech tagging amounts to find the best
sequence of grammatical categories ĉ = c1 : : : cn to assign to a
given word sequence w = w1 : : : wn

The problem can be represented as a search problem (search for
the best path) in the following (weighted) Dag:

word1 word2 ... wordn

C2

...

Cm

C1

C2

...

Cm

C1

C2

...

Cm

C1

C2

...

Cm

C1

S D

where each wi can in principle be mapped to any category c 2 C such
that we have in principle jCjn possible category sequences for the
string w.
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Part of speech tagging Searching the longest path in a Dag

Topological numbering/ordering

Let G = hV;Ei, be a Dag:

A topological numbering is a function x : V 7! 1 : : : n such that:

x(v) � x(u) 8(u; v) 2 E

A topological ordering is a function x : V 7! 1 : : : n such that:

x(v) > x(u) 8(u; v) 2 E
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Part of speech tagging Searching the longest path in a Dag

Example I

Suppose we want to compute the longest path from the source to all
other nodes in a Dag. Here we suppose the weights are probabilities,
we multiply them along a path and take the maximum of all incoming
paths at every node.
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function LongestPath(G = 〈V,E〉)
Compute a topological ordering of G
d[v]←



Part of speech tagging Searching the longest path in a Dag

Example II

Suppose we want to compute for every node v 2 V the number of
different paths from the source to v in a Dag. Here we suppose the
weights are 1 on every edge, we multiply them along a path and add
them at every node.

1

2

3

5

4

0
6

1

1
1

1

1

1

1

1

1

1 

1 

 1 

 2 

 3 

 2 

 5 

function NumPaths(G = 〈V,E〉)
Compute a topological ordering of G
d[v]← 0 (∀v ∈ V )
d[s]← 1
for all v ∈ V in topological order do

for all u ∈ BS(v) do
d[v]← d[v] + (d[u]× w(u, v))

end for
end for
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Part of speech tagging Searching the longest path in a Dag

Generalisation

The introductory examples algorithms can be generalised by
observing that we perform computations in semi-ring structures
of the form hA;�;
; 0̄; 1̄i where:

A is a set
(A;�) is a commutative monoid with identity element 0̄
(A;
) is a monoid with identity element 1̄
Multiplication distributes over addition
Multiplication by 0 annihilates A

Comments

Example 1 used the probabilistic semiring h[0; 1];max;�; 0; 1i
Example 2 used the counting semiring hN;+;�; 0; 1i
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Part of speech tagging Searching the longest path in a Dag

Some terminology/definitions

Definition

A weighted directed graph is a pair G = hV;Ei where V is the set
of vertices and E the set of Edges with a mapping E 7! A that assigns
each edge a weight from the semiring (A;�;
; 0̄; 1̄)

Definition

The backward star BS(v) of a vertex x is the set of incoming edges,
the forward star FS(v) is the set of outgoing edges.
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Part of speech tagging Searching the longest path in a Dag

Some terminology/definitions continued

Definition

A path � = e1 : : : en in a graph G is a sequence of consecutive edges
where ei; ei+1 are connected by a vertex. The weight of a path w(�) is:

w(�) =

n⊗
i=1

w(ei)

Definition

Given a distinguished vertex s 2 V the source, the weight of the best
path from the source to v is defined as:

�(v) =

{
1̄ v = s⊕

�∈�(v)w(�) v 6= s
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Part of speech tagging Searching the longest path in a Dag

Best weights in a Dag

Applies to a weighted directed acyclic graph

Assumes a single source

function Viterbi(G = 〈V,E〉)
Compute a topological ordering of G
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄
for all v ∈ V in topological order do

for all u ∈ BS(v) do
d[v]← d[v]⊕ (d[u]⊗ w(u, v))

end for
end for

end function
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Part of speech tagging Searching the longest path in a Dag

Variations

Here is a variant (forward update)

function Viterbi(G = 〈V,E〉)
Compute a topological ordering of G
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄
for all v ∈ V in topological order do

for all u ∈ FS(v) do
d[u]← d[u]⊕ (d[v]⊗ w(v, u))

end for
end for

end function

Another variant is memoized recursion: starts on the
destination state t and recursively solves subproblems (by storing
intermediate results to avoid duplicate computations)
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Part of speech tagging Searching the longest path in a Dag

Exercises and examples

In practice the probabilistic semi-ring is not really used since the
multiplication of very low probabilities leads to numerical
underflows. In place the probabilities are mapped to their
logarithm. Which semi-ring would you use in this case ?
Solution: h[�1; 0];max;+;�1; 0i
Two standard techniques used in Machine Learning, the
perceptron and logistic regression yield weights that are real
numbers, and their combination along a path is addition, in this
case one uses the real semi-ring: h[�1;+1];max;+;�1; 0i
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Part of speech tagging HMM modelling

Illustration with a classical statistical model

A bigram Hmm models the mapping as follows (markov independance
hypothesis+word independance emission hypothesis):

P (c,w) =
nY
i=1

P (ci|ci−1)P (wi|ci)

This model can be used to predict the categories given the observed words :

P (c|w) =
1

P (w)
×

nY
i=1

P (ci|ci−1)P (wi|ci)

Finding the best sequence of categories among all possible such sequences |C|n
amounts to find :

ĉ = argmax
c∈|C|n

1

P (w)
×

nY
i=1

P (ci|ci−1)P (wi|ci)

Since P (w) is constant accross all hypotheses, it can be dropped:

ĉ = argmax
c∈|C|n

nY
i=1

P (ci|ci−1)P (wi|ci)
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Part of speech tagging HMM modelling

Estimating the parameters of an Hmm

We suppose to have a corpus of n observations of annotated text,
where each sequence of word (wi) is mapped to its sequence of
categories (ci)

The vector of parameters ~� (probabilities of factors P (cijci−1) and
P (wijci)) of an Hmm are estimated in order to maximise the
likelihood of the observed data:

θ̂ = argmax
~�

nY
i=1

P (ci,wi; ~θ)

The solution to this optimisation problem is analytic and amounts
to estimate the parameters using relative frequencies:

P (ci|ci−1) =
Count(ci, ci−1)

Count(ci−1)
P (wi|ci) =

Count(wi, ci)

Count(ci)

Comment

Since bigrams and words are zipf distributed, it is critical in practice to
refine parameter estimation using some smoothing method.
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Part of speech tagging HMM modelling

Representation of an Hmm

Definition

An Hmm is a tuple 〈C, T,Π, F,W, P 〉 where :

C : is a state set c1 . . . cn

T : is a probability transition matrix where tij is the probability to move from
ci to cj , P (cj |ci), with ∀ci

P
j tij = 1

Π : π1, . . . πn is the initial probability distribution with
P
i πi = 1

F : is the set of final states (F ⊆ C)

W : w1 . . . wn is a set of symbols (observations or words)

P : is the symbol emission probability function where ci(wj) is the probability
P (wi|ci). We have that

P
j ci(wj) = 1
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1/4
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Part of speech tagging HMM modelling

Plugging it together

To summarize, we can solve the following equation:

ĉ = argmax
c∈|C|n

n∏
i=1

P (cijci−1)P (wijci)

with the search method (Viterbi algorithm) described above. The
weights of the edges are the products P (cijci−1)P (wijci).
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Part of speech tagging HMM modelling

Instanciation of the Viterbi Algorithm for Hmm

The Viterbi algorithm for computing the best path:
function Viterbi(G = 〈V,E〉)

Compute a topological ordering of G
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄
for all v ∈ V in topological order do

for all u ∈ FS(v) do
d[u]← d[u]⊕ (d[v]⊗ weight(d[v], d[u]))

end for
end for

end function

where the semi-ring is the probabilistic semi-ring. We further assume
that weight(d[v]; d[u]) is a function computing P (cijci−1)
 P (wijci)
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Part of speech tagging HMM modelling

Exercise (Forward algorithm)

Provided an Hmm model of the form:

P (c;w) =

n∏
i=1

P (cijci−1)P (wijci)

we want to compute P (w) =
∑

c∈|C|n
∏n
i=1 P (cijci−1)P (wijci) for

some w = w1 : : : wn

How to compute P (w) ?
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Part of speech tagging HMM modelling

Conclusion

Comment

For other machine learning methods such as Multinomial Logistic
regression, Perceptron. . . also try to maximise some score. What
changes is the weight(�; �) function and the semi-ring actually used.
Although some further algorithmic complications may rise at statistical
estimation (estimating the weights).

When applied in prediction, models of the above form usually get
96%-98% correct predictions per word when compared with reference
data.
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Parsing as a search problem

Parsing as a search problem

In practice an exhaustive parser computing all parses for a
treebank grammar returns commonly a shared forest encoding
several thousands/millions of trees, which is:

Useless as it stands (practical point of view)
Ignoring the strong competence hypothesis (Bresnan 82) : human
language competence also allows to rank parses.

Since the grammar is weighted, parsing can also be viewed as a
search problem for the best (or k-best solutions ) in the space of
all solutions (that is the shared forest).
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Parsing as a search problem Search in an Hypergraph
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Parsing as a search problem Search in an Hypergraph

The shared forest as an hypergraph

The shared forest can be seen as an hypergraph whose
hypervertices are equivalence classes (equivalent items) and whose
hyperedges are weighted CFG∩ rules.

Two items hX; i; ji,hX ′; i′; j′i are equivalent iff X = X ′; i = i′ and
j = j′.

Illustration:
S0,7

w1

NP0,1 VP1,4 PP4,7 VP1,7

w2

Hypervertices

Hypervertices

Hyperedges

A fragment of a shared forest as an hypergraph

In what follows, we transfer our graph based search algorithm to
hypergraphs
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Parsing as a search problem Search in an Hypergraph

Hypergraph (definitions)

Definition

A weighted directed hypergraph is a pair H = hV;Ei with a set R
where V is the set of (hyper) vertices, E the set of hyperedges and



Parsing as a search problem Search in an Hypergraph

Definitions (continued)

Definition

The Backward Star BS(v) of a vertex v is the set of incoming
hyperedges such that fe 2 Ejv = h(e)g

Definition

The Forward Star FS(v) of a vertex v is the set of outgoing
hyperedges such that fe 2 Ejv 2 T (e)g

Definition

The graph projection of an hypergraph is a directed graph G = hV;E′i
where

E′ = f(u; v)j9e 2 BS(v) s:t: u 2 T (e)g

An hypergraph is acyclic iff its projection is acyclic and a topological
ordering of H is a topological ordering of V , that is a topological
ordering of G.
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Parsing as a search problem Search in an Hypergraph

Definitions (Derivation)

We also need to define a counterpart of a graph path:

Definition

A derivation D of a vertex v in a hypergraph H, its size jDj and its
weight w(D) are recursively defined as follows:

if e 2 BS(v) with jej = 0, then D = he; �i is a derivation of v, its
size jDj = 1 and its weight w(D) = fe()

If e 2 BS(v) where e > 0 and Di is a derivation of Ti(e) for 1
� i � jej then D = he;D1 : : : D|e|i is a derivation of v, its size

jDj = 1 +
∑|e|

i=1 jDij and its weight w(D) = fe(w(D1); : : : ; w(D|e|))
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Parsing as a search problem Search in an Hypergraph

Ordering derivations and best derivation

The ordering on weights R induces an ordering on derivations :
D � D′ iff w(D) � w(D′)

Definition

Let D(v) be the set of derivations of v. The best weight �(v) of a
vertex v is the weight of the best derivation of v:

�(v) =

{
1̄ v is a source vertex
�D∈D(v)w(D) otherwise
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Parsing as a search problem Search in an Hypergraph

Illustration

Suppose we want to compute the longest path from the sources vertices
to all other nodes in a Dah. Here we suppose the weights are
probabilities, we multiply them along the derivations by the
probabilities of the hyperedges and take the maximum of all incoming
derivations at every node.

A0,4

B0,2
C2,4

D2,3 E3,4 F3,4G0,1 H1,2

f = 1/2 * 1 * 1 f = 2/3*1*1f = 1/4 *1*1

f = 1/3 * 1/2 * 2/3

 1  1  1  1 

 1/2  2/3 

 1 

 1/9 
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Parsing as a search problem Search in an Hypergraph

The Viterbi algorithm for Dah

The Viterbi algorithm for computing the best derivation:
function Viterbi(H = 〈V,E〉)

Compute a topological ordering of H
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄ . Init weights for all the sources
for all v ∈ V in topological order do

for all hyperedge e = 〈v, u1, . . . u|e|, fe〉 ∈ BS(v) do
d[v]← d[v]⊕ fe(d(u1) . . . d(u|e|))

end for
end for

end function

Comments

In principle the algorithm can accomodate any weighting scheme: it
requires to specify fe and the semi-ring according to the interpretation
of the weights required by the statistical method used. In practice, fe
is computationaly expensive (prohibitive) for discriminative learning
methods : multinomial logistic regression, perceptron. . .
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Parsing as a search problem Search in an Hypergraph

Plugging Viterbi in Cky

Since Viterbi requires the parse items to be processed in topological
order wrt H, Cky is a straightforward choice for processing weighted
grammars since it already processes items in topological order, hence
Viterbi can be directly integrated in the recognition process. The
weighted inference rules for Cky are the following:

Goal :
< S; 0; n >

Scan :

hA; i� 1; 1i : 1̄
A! wi 2 P

Complete :

hB; i; ‘1i : w1 hC; i+ ‘1; ‘2i : w2

hA; i; ‘1 + ‘2i : w1 
 w2 
 w(A! BC)
A! BC 2 P

() Linguistique LI6 May 3, 2013 35 / 48



Parsing as a search problem Search in an Hypergraph

A forward variant of the Viterbi algorithm

Like for the graph case, a forward variant of the Viterbi algorithm can
be designed for hypergraphs too. However the situation is not as
straightforward as for the graph case, the following adaptation is
incorrect:

function Viterbi(H = 〈V,E〉)
Compute a topological ordering of H
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄ . Init weights for all the sources
for all v ∈ V in topological order do

for all hyperedge e ∈ FS(v) do
d[h(e)]← d[h(e)]⊕ fe(d(u1) . . . d(u|e|))

end for
end for

end function
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Parsing as a search problem Search in an Hypergraph

Illustration

There is indeed a risk of firing an hyperedge before all its tail
vertices have been assigned their best weight.

A0,4

B0,2
C2,4

D2,3 E3,4 F3,4G0,1 H1,2

Suppose v = B0,2 but the green hyperedge has not yet been processed. Firing the red hyperedge

immediately does not guarantee its weight to be optimal.

It requires to wait until the tail has been fully processed.
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Parsing as a search problem Search in an Hypergraph

A solution

One can use a counter to delay the firing
function Viterbi(H = 〈V,E〉)

Compute a topological ordering of H
d[v]← 0̄ (∀v ∈ V )
d[s]← 1̄ . Init weights for all the sources
r[e]← |e|
for all v ∈ V in topological order do

for all hyperedge e ∈ FS(v) do
r[e]← r[e]− 1
if r[e] == 0 then

d[h(e)]← d[h(e)]⊕ fe(d(u1) . . . d(u|e|))
end if

end for
end for

end function
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Parsing as a search problem Pcfg
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Parsing as a search problem Pcfg

Illustration (PCFG)

A Probabilistic Context free Grammar G = hN;T; P; S;Πi is a
CFG hN;T; P; Si with a mapping Π : P ! [0; 1]

A Pcfg defines a probability distribution over a set of sentences
S = L(G) such that :

P (S) = 1

The probability P (s) of a sentence s 2 S is the sum of the
probabilities of its parse trees:

P (s) =
∑

t∈Gen(s)

P (s; t)

where Gen(s) denotes the set of parse trees of this sentence.

The Probability of a parse tree P (t) is the probability of the rules
used to derive s

P (s; t) = P (t) =
∏

P (�→�)∈t

P (�! �)
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Parsing as a search problem Pcfg

Inference

There are two main inference tasks for Pcfgs:

Parameter estimation: Given a collection of trees, called a
treebank one can estimate the parameters of the grammar by
counting, the relative frequency ratio is also the maximum
likelihood estimate:

P (�! �) = P (�j�) =
C(�! �)∑

:�→
 C(�→
)

Prediction (parsing), which amounts to search for the parse t̂
with maximal probability:

t̂ = argmax
t∈Gen(s)

∏
P (�→�)∈t

P (�! �)

which we can solve with the Viterbi search for Directed acyclic
hypergraphs (aka weighted Cky) using a probabilistic semi-ring.
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Parsing as a search problem Pcfg

Comments on search methods

The Viterbi search method is not the only search method
available. . .

Other search methods can be used, for instance Dijkstra’s shortest
path algorithm (Knuth 77) or its extension A* search can be used
as well. (Q: with which semi-rings ?)

However using another search method requires:

The semi-ring to satisfy the properties of the search method: e.g.
Dijkstra requires a superior semi-ring.
Since it is desirable to integrate the weighting computation into the
recognition process, the ordering of the parsing method should be
compatible with the ordering of the search method. (e.g. Earley
cannot work with a search method requiring a topological ordering
of the items)
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