SPIM QuICK Rererence

1of 12

This Web page was created by reformatting portions of the LaTeX source file of the public domain

nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

SPIM Quick Reference

documentation distributed with the SPIM simulator.

Contents

MIPS Reqgisters and Usage Convention

Table of sycsalI's

Assembler Directives

SPIM Instruction Set

[e]

]]]]]]]]

Arithmetic and Logical Instructions.

Constant-M anipul ating Instructions

Comparison Instructions

Branch and Jump Instructions

Load Instructions

Store Instructions

Data M ovement Instructions

Floating Point I nstructions

Exception and Trap Instructions

MIPS Register sand Usage Convention

|Reg|ster Name|Number| Usage

| zero | 0 |[ConstantO

| at | 1 |[Reserved for assembler

| vO | 2 |[Expression evaluation and results of afunction
| vl | 3 |Expr on evaluation and results of afunction
| a0 | 4 |Argument 1

| al | 5 ||Argument 2

| a2 | 6 ||Argument3

| a3 | 7 |Argument 4

| t0 | 8 |Temporary (not preserved across call)

| tl | 9 |[Temporary (not preserved across cal)

| t2 | 10 |[Temporary (not preserved across cal)

| t3 | 11 |Temporary (not preserved across call)

| t4 | 12 |Temporary (not preserved across call)

| t5 | 13 |[Temporary (not preserved across cal)

| t6 | 14 |[Temporary (not preserved across cal)

| t7 | 15 |Temporary (not preserved across call)

| 0 | 16 |Saved temporary (preserved across call)
| sl | 17 |[Saved temporary (preserved across call)
| 2 | 18 |[Saved temporary (preserved across call)
| s3 | 19 |Saved temporary (preserved across call)
| A | 20 |Saved temporary (preserved across call)
| s | 21 |[Saved temporary (preserved across call)
| s6 | 22 |[Saved temporary (preserved across call)

11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

2 of 12

| s/ | 23 |Saved temporary (preserved across call)

| t8 | 24 [Temporary (not preserved across call)

| t9 | 25 |[Temporary (not preserved across cal)

| kO | 26 ||[Reservedfor OSkernel

| k1 | 27 |[Reservedfor OSkernel

| ap | 28 |[Pointer to global area

| p | 29 |[Stack pointer

| fp | 30 |Frame pointer

| ra | 31 |Return address (used by function call)

System Services

| Service |[System Call Code| Arguments | Result
[print_int | 1 [sa0 = integer
[print_float | 2 st 12 = float
[print_double| 3 sf 12 = double
[print_string | 4 [fa0 = string
[read_int | 5 | [integer (in $vo)
[read_float | 6 | [float (in s 0)
[read_double | 7 | |double (in sf o)
[read_string | 8 [sa0 = buffer, sa1 =length
[sbrk | 9 [fa0 = amount [address (in $vo)
|exit | 10 |

Assembler Directives

.align n
Align the next datum on a 2*n byte boundary. For example, . al i gn 2 aligns the next value on aword
boundary. . al'i gn 0 turns off automatic alignment of . hal f, . word, . f1 oat , and . doubl e directives until
the next . dat a Or . kdat a directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte bl, ..., bn
Store the n values in successive bytes of memory.

.data
The following data items should be stored in the data segment. If the optional argument addr is present,
the items are stored beginning at address addr.

.double d1, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern symsize
Declare that the datum stored at symiSsi ze byteslarge and isaglobal symbol. This directive enables
the assembl er to store the datum in a portion of the data segment that is efficiently accessed viaregister

$gp.
.float f1, ..., fn

Store the n floating point single precision numbers in successive memory locations.
.globl sym

Declare that symbol symis global and can be referenced from other files.
.half h1, ..., hn

11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Store the n 16-bit quantities in successive memory halfwords.

. kdat a
The following data items should be stored in the kernel data segment. If the optional argument addr is
present, the items are stored beginning at address addr.

. kt ext
The next items are put in the kernel text segment. In SPIM, these items may only be instructions or
words (see the . wor d directive below). If the optional argument addr is present, the items are stored

beginning at address addr.

.space n
Allocate n bytes of space in the current segment (which must be the data segment in SPIM).

.text
The next items are put in the user text segment. In SPIM, these items may only be instructions or words
(see the. wor d directive below). If the optional argument addr is present, the items are stored beginning
at address addr.

.word wi, ..., wn

Store the n 32-bit quantities in successive memory words.
SPIM Instruction Set

Arithmetic and L ogical Instructions

In al instructions below, src2 can either be aregister or an immediate value (a 16 bit integer). The immediate
forms of the instructions are only included for reference. The assembler will translate the more general form
of aninstruction (e.g., add) into the immediate form (e.g., addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value

Put the absolute value of the integer from register Rsrc in register Rdest .

add Rdest, Rsrcl, Src2 Addition (with overflow)
addi Rdest, Rsrcil, |mm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)
addi u Rdest, Rsrcl, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrc1 and src2 (or | mm) into register Rdest .

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrcil, |nm AND Immediate

Put the logical AND of the integers from register Rsrc1 and src2 (or | mm) into register Rdest .

div Rsrcl, Rsrc2 Divide (with overflow)
divu Rsrcl, Rsrc2 Divide (without overflow)

Divide the contents of the two registers. Leave the quotient in register | o and the remainder in
register hi . Note that if an operand is negative, the remainder is unspecified by the MIPS
architecture and depends on the conventions of the machine on which SPIM is run.

div Rdest, Rsrcl, Src2 Divide (with overflow)
di vu Rdest, Rsrcl, Src2 Divide (without overflow)

Put the quotient of the integers from register Rsrc1 and src2 into register Rdest .

30f 12 11.10.2006 16:24

SPIM QuICK Rererence

mul Rdest, Rsrcl, Src2 Multiply (without overflow)
mul o Rdest, Rsrcl, Src2 Multiply (with overflow)
mul ou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow)

Put the product of the integers from register rRsrc1 and src2 into register Rdest .

mult Rsrcl, Rsrc2 Multiply
mul tu Rsrcl, Rsrc2 Unsigned Multiply

Multiply the contents of the two registers. Leave the low-order word of the product in register
I o and the high-word in register hi .

neg Rdest, Rsrc Negate Vaue (with overflow)
negu Rdest, Rsrc Negate Value (without overflow)

Put the negative of the integer from register Rsrc into register Rdest .

nor Rdest, Rsrcl, Src2 NOR
Put the logical NOR of the integers from register Rsrc1 and src2 into register Rdest .

not Rdest, Rsrc NOT
Put the bitwise logical negation of the integer from register Rsr ¢ into register Rdest .

or Rdest, Rsrcl, Src2 OR
ori Rdest, Rsrcil, Imm OR Immediate

Put the logical OR of the integers from register Rsrc1 and src2 (or | mm) into register Rdest .

rem Rdest, Rsrcl, Src2 Remainder
remu Rdest, Rsrcl, Src2 Unsigned Remainder

Put the remainder from dividing the integer in register rRsrc1 by the integer in src2 into register
Rdest . Note that if an operand is negative, the remainder is unspecified by the MI1PS architecture
and depends on the conventions of the machine on which SPIM isrun.

rol Rdest, Rsrcl, Src2 Rotate L eft
ror Rdest, Rsrcl, Src2 Rotate Right

Rotate the contents of register rsrc1 l€eft (right) by the distance indicated by src2 and put the
result in register Rdest .

sl| Rdest, Rsrcl, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Shift the contents of register rsrc1 l€eft (right) by the distance indicated by src2 (Rsrc2) and put
the result in register Rdest .

sub Rdest, Rsrcl, Src2 Subtract (with overflow)
subu Rdest, Rsrcl, Src2 Subtract (without overflow)

Put the difference of the integers from register rsrc1 and src2 into register Rdest .

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcl, Imm XOR Immediate

Put the logical XOR of the integers from register rRsrc1 and src2 (Or | m) into register Rdest .

Constant-M anipulating Instructions

i Rdest, inmm Load Immediate

Move the immediate i mminto register Rdest .

lui Rdest, imm Load Upper Immediate

Load the lower halfword of the immediate i nrminto the upper halfword of register Rdest . The
lower bits of the register are set to O.

Comparison Instructions
In al instructions below, src2 can either be aregister or an immediate value (a 16 bit integer).
seq Rdest, Rsrcl, Src2 Set Equal

Set register Rdest to 1 if register rRsrc1 equals src2 and to be O otherwise.

sge Rdest, Rsrcl, Src2 Set Greater Than Equal
sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned

Set register Rdest to 1if register rsrc1 isgreater than or equal to src2 and to 0 otherwise.

sgt Rdest, Rsrcl, Src2 Set Greater Than
sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsigned

Set register Rdest to 1if register rRsrc1 isgreater than src2 and to 0 otherwise.

sl e Rdest, Rsrcl, Src2 Set Less Than Equal
sl eu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned

Set register Rdest to 1if register rsrc1 islessthan or equal to src2 and to 0 otherwise.

5of 12 11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

st Rdest, Rsrcl, Src2 Set Less Than
slti Rdest, Rsrcl, Imm Set Less Than Immediate
sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrcl, |Inmm Set Less Than Unsigned Immediate

Set register Rdest to 1if register rRsrc1 islessthan src2 (or 1 nm) and to O otherwise.
sne Rdest, Rsrcl, Src2 Set Not Equal

Set register Rdest to 1 if register Rsrc1 isnot equal to src2 and to 0 otherwise.

Branch and Jump Instructions

In al instructions below, src2 can either be aregister or an immediate value (integer). Branch instructions
use asigned 16-bit offset field; hence they can jump 2*15-1 instructions (not bytes) forward or 2215
instructions backwards. The jump instruction contains a 26 bit address field.

b | abel Branch instruction

Unconditionally branch to the instruction at the label.

bczt | abel Branch Coprocessor z True
bczf | abel Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor Z' s condition flag is true
(false).

beq Rsrcl, Src2, |abel Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals src2.

beqz Rsrc, | abel Branch on Equal Zero
Conditionally branch to the instruction at the label if the contents of rsrc equals 0.

bge Rsrcl, Src2, |abel Branch on Greater Than Equal
bgeu Rsrcl, Src2, |abel Branch on GTE Unsigned

Conditionally branch to the instruction at the label if the contents of register rsrc1 are greater
than or equal to src2.

bgez Rsrc, |abel Branch on Greater Than Equal Zero

Conditionally branch to the instruction at the label if the contents of rsrc are greater than or
equal to 0.

bgezal Rsrc, | abel Branch on Greater Than Equal Zero And Link

6 of 12 11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Conditionally branch to the instruction at the label if the contents of rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrcl, Src2, |abel Branch on Greater Than
bgtu Rsrcl, Src2, |abel Branch on Greater Than Unsigned

Conditionally branch to the instruction at the label if the contents of register rsrc1 are greater
than src2.

bgtz Rsrc, |abel Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of rsrc are greater than 0.

ble Rsrcl, Src2, |abel Branch on Less Than Equal
bl eu Rsrcl, Src2, |abel Branch on LTE Unsigned

Conditionally branch to the instruction at the label if the contents of register rsrc1 are less than
or equal to src2.

bl ez Rsrc, |abel Branch on Less Than Equal Zero

Conditionally branch to the instruction at the label if the contents of rsrc are less than or equal

to 0.
bgezal Rsrc, |abel Branch on Greater Than Equal Zero And Link
bl tzal Rsrc, |abel Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of rsrc are greater or equal to
0 or lessthan 0, respectively. Save the address of the next instruction in register 31.

blt Rsrcl, Src2, |abel Branch on Less Than
bltu Rsrcl, Src2, |abel Branch on Less Than Unsigned

Conditionally branch to the instruction at the label if the contents of register rsrc1 are less than
Src2.

bltz Rsrc, |abel Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of rsrc are less than O.
bne Rsrcl, Src2, |abel Branch on Not Equal

Conditionally branch to the instruction at the label if the contents of register rsrc1 are not equal
to src2.

bnez Rsrc, | abel Branch on Not Equal Zero
Conditionally branch to the instruction at the label if the contents of rsrc are not equal to 0.

j 1abel Jump

70of 12 11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Unconditionally jump to the instruction at the label.

jal |abel Jump and Link
jalr Rsrc Jump and Link Register

Unconditionally jJump to the instruction at the label or whose addressisin register rRsrc. Save
the address of the next instruction in register 31.

jr Rsrc Jump Register

Unconditionally jump to the instruction whose addressisin register Rsrc.

Load Instructions

| a Rdest, address Load Address
Load computed address, not the contents of the location, into register Rdest .

I b Rdest, address Load Byte
| bu Rdest, address Load Unsigned Byte

Load the byte at addressinto register Rdest . The byte is sign-extended by the 1 b, but not the
| bu, instruction.

|d Rdest, address L oad Double-Word
Load the 64-bit quantity at addressinto registers Rdest and Rdest + 1.

I h Rdest, address L oad Halfword
| hu Rdest, address Load Unsigned Halfword

Load the 16-bit quantity (halfword) at address into register Rdest . The halfword is
sign-extended by the1 nh, but not the | hu, instruction

| w Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest .

lwcz Rdest, address Load Word Coprocessor z
Load the word at address into register Rdest of coprocessor z (0-3).

Iw Rdest, address Load Word Left
| wr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest .

ul h Rdest, address Unaligned L oad Halfword

8 of 12 11.10.2006 16:24

SPIM QuICK Rererence

9of 12

nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

ul hu Rdest, address Unaligned L oad Halfword Unsigned

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest . The

halfword is sign-extended by the ul h, but not the ul hu, instruction

ul w Rdest, address Unaligned Load Word

Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest .

Store Instructions

sb Rsrc, address Store Byte
Store the low byte from register rsr ¢ at address.

sd Rsrc, address Store Double-Word
Store the 64-bit quantity in registersrsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword
Store the low halfword from register rsrc at address.

sw Rsrc, address Store Word
Store the word from register rsrc at address.

swcz Rsrc, address Store Word Coprocessor z
Store the word from register Rsr ¢ of coprocessor z at address.

sw Rsrc, address Store Word L eft
swr Rsrc, address Store Word Right

Store the left (right) bytes from register rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword
Store the low halfword from register rsr ¢ at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word

Store the word from register rsr ¢ at the possibly-unaligned address.

Data Movement I nstructions

nove Rdest, Rsrc

Move

11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Move the contents of Rsrc tO Rdest .
The multiply and divide unit produces its result in two additional registers, hi and lo. These instructions
move values to and from these registers. The multiply, divide, and remainder instructions described above

are pseudoinstructions that make it appear asif this unit operates on the general registers and detect error
conditions such as divide by zero or overflow.

nfhi Rdest Move From hi
nflo Rdest Move From lo

Move the contents of the hi (l0) register to register Rdest .

nt hi Rdest Move To hi
mlo Rdest MoveTolo

Move the contents register Rdest to the hi (10) register.

Coprocessors have their own register sets. These instructions move val ues between these registers and the
CPU’sregisters.

nfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor Z sregister cpsrc to CPU register Rdest .
nfcl.d Rdest, FRsrcl Move Double From Coprocessor 1

Move the contents of floating point registersFrsrc1 and Frsrc1 + 1 to CPU registers rdest and
Rdest + 1.

nmcz Rsrc, CPdest Move To Coprocessor z

Move the contents of CPU register Rsr ¢ t0 coprocessor Z' s register crdest .

Floating Point Instructions

The MIPS has afloating point coprocessor (numbered 1) that operates on single precision (32-bit) and double
precision (64-bit) floating point numbers. This coprocessor has its own registers, which are numbered f o- 31.
Because these registers are only 32-bits wide, two of them are required to hold doubles. To simplify matters,
floating point operations only use even-numbered registers - including instructions that operate on single
floats. Values are moved in or out of these registers aword (32-bits) at atime by 1 we1, swe1, ntc1, and nf c1
instructions described above or by thel . s, 1.4d, s. s, and s. d pseudoinstructions described below. The flag set
by floating point comparison operationsis read by the CPU with itsbc1t and be1f instructions. In all
instructions below, FRdest , FRsrc1, FRsr c2, and Frsr ¢ are floating point registers (e.g., f 2).

abs. d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single

Compute the absolute value of the floating float double (single) in register Frsrc and put itin
register FRdest .

add. d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double

10 of 12 11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single

Compute the sum of the floating float doubles (singles) in registers Frsrc1 and Frsr c2 and put it
in register FRdest .

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Equal Single

Compare the floating point double in register Frsr c1 against the onein Frsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrcl, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Equal Single

Compare the floating point double in register Frsr c1 against the onein Frsrc2 and set the
floating point condition flag true if the first isless than or equal to the second.

c.lt.d FRsrcl, FRsrc2 Compare Less Than Double
c.lt.s FRsrcl, FRsrc2 Compare Less Than Single

Compare the floating point double in register Frsr c1 against the onein Frsrc2 and set the
condition flag trueif the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

Convert the single precision floating point number or integer in register Frsr ¢ to adouble
precision number and put it in register FRdest .

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

Convert the double precision floating point number or integer in register Frsrc to asingle
precision number and put it in register FRdest .

cvt.w. d FRdest, FRsrc Convert Double to Integer
cvt.w. s FRdest, FRsrc Convert Single to Integer

Convert the double or single precision floating point number in register Frsr ¢ to an integer and
put it in register FRdest .

div.d FRdest, FRsrcl, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc2 Floating Point Divide Single

Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and Frsrc2 and
put it in register FRdest .

|.d FRdest, address Load Floating Point Double
|.s FRdest, address Load Floating Point Single

11 of 12 11.10.2006 16:24

SPIM QuICK Rererence nttps.//www.cs.tcd.le/~walaroj/itral/spim_rer.ntmi

Load the floating float double (single) at addr ess into register FRdest .

nmov. d FRdest, FRsrc Move Floating Point Double
nov.s FRdest, FRsrc Move Floating Point Single

Move the floating float double (single) from register FRrsr ¢ to register FRdest .

mul . d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul . s FRdest, FRsrcl, FRsrc2 Floating Point Multiply Single

Compute the product of the floating float doubles (singles) in registers Frsrc1 and Frsrc2 and
put it in register FRdest .

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

Negate the floating point double (single) in register FrRsrc and put it in register FRdest .

s.d FRdest, address Store Floating Point Double
s.s FRdest, address Store Floating Point Single

Store the floating float double (single) in register FRdest at addr ess.

sub. d FRdest, FRsrcl, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single

Compute the difference of the floating float doubles (singles) in registers Frsrc1 and Frsrc2 and
put it in register FRdest .

Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscal | System Call

Register vo contains the number of the system call (see System Services) provided by SPIM.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.
nop No operation

Do nothing.

12 of 12 11.10.2006 16:24

