
SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

1 of 12 11.10.2006 16:24

SPIM Quick Reference

This Web page was created by reformatting portions of the LaTeX source file of the public domain
documentation distributed with the SPIM simulator.

Contents

MIPS Registers and Usage Convention
Table of sycsalls
Assembler Directives
SPIM Instruction Set

Arithmetic and Logical Instructions.
Constant-Manipulating Instructions
Comparison Instructions
Branch and Jump Instructions
Load Instructions
Store Instructions
Data Movement Instructions
Floating Point Instructions
Exception and Trap Instructions

MIPS Registers and Usage Convention

Register Name Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0 2 Expression evaluation and results of a function
v1 3 Expression evaluation and results of a function
a0 4 Argument 1
a1 5 Argument 2
a2 6 Argument 3
a3 7 Argument 4
t0 8 Temporary (not preserved across call)
t1 9 Temporary (not preserved across call)
t2 10 Temporary (not preserved across call)
t3 11 Temporary (not preserved across call)
t4 12 Temporary (not preserved across call)
t5 13 Temporary (not preserved across call)
t6 14 Temporary (not preserved across call)
t7 15 Temporary (not preserved across call)
s0 16 Saved temporary (preserved across call)
s1 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
s3 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
s5 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

2 of 12 11.10.2006 16:24

s7 23 Saved temporary (preserved across call)
t8 24 Temporary (not preserved across call)
t9 25 Temporary (not preserved across call)
k0 26 Reserved for OS kernel
k1 27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address (used by function call)

System Services

Service System Call Code Arguments Result
print_int 1 $a0 = integer
print_float 2 $f12 = float
print_double 3 $f12 = double
print_string 4 $a0 = string
read_int 5 integer (in $v0)
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0 = buffer, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10

Assembler Directives

.align n

Align the next datum on a 2^n byte boundary. For example, .align 2 aligns the next value on a word
boundary. .align 0 turns off automatic alignment of .half, .word, .float, and .double directives until
the next .data or .kdata directive.

.ascii str

Store the string in memory, but do not null-terminate it.
.asciiz str

Store the string in memory and null-terminate it.
.byte b1, ..., bn

Store the n values in successive bytes of memory.
.data

The following data items should be stored in the data segment. If the optional argument addr is present,
the items are stored beginning at address addr.

.double d1, ..., dn

Store the n floating point double precision numbers in successive memory locations.
.extern sym size

Declare that the datum stored at sym is size bytes large and is a global symbol. This directive enables
the assembler to store the datum in a portion of the data segment that is efficiently accessed via register
$gp.

.float f1, ..., fn

Store the n floating point single precision numbers in successive memory locations.
.globl sym

Declare that symbol sym is global and can be referenced from other files.
.half h1, ..., hn

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

3 of 12 11.10.2006 16:24

Store the n 16-bit quantities in successive memory halfwords.
.kdata

The following data items should be stored in the kernel data segment. If the optional argument addr is
present, the items are stored beginning at address addr.

.ktext

The next items are put in the kernel text segment. In SPIM, these items may only be instructions or
words (see the .word directive below). If the optional argument addr is present, the items are stored
beginning at address addr.

.space n

Allocate n bytes of space in the current segment (which must be the data segment in SPIM).
.text

The next items are put in the user text segment. In SPIM, these items may only be instructions or words
(see the .word directive below). If the optional argument addr is present, the items are stored beginning
at address addr.

.word w1, ..., wn

Store the n 32-bit quantities in successive memory words.

SPIM Instruction Set

Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer). The immediate
forms of the instructions are only included for reference. The assembler will translate the more general form
of an instruction (e.g., add) into the immediate form (e.g., addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value

Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate

Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrc1, Rsrc2 Divide (with overflow)
divu Rsrc1, Rsrc2 Divide (without overflow)

Divide the contents of the two registers. Leave the quotient in register lo and the remainder in
register hi. Note that if an operand is negative, the remainder is unspecified by the MIPS
architecture and depends on the conventions of the machine on which SPIM is run.

div Rdest, Rsrc1, Src2 Divide (with overflow)
divu Rdest, Rsrc1, Src2 Divide (without overflow)

Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest.

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

4 of 12 11.10.2006 16:24

mul Rdest, Rsrc1, Src2 Multiply (without overflow)
mulo Rdest, Rsrc1, Src2 Multiply (with overflow)
mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow)

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply

Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow)
negu Rdest, Rsrc Negate Value (without overflow)

Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrc1, Src2 NOR

Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT

Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate

Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrc1, Src2 Remainder
remu Rdest, Rsrc1, Src2 Unsigned Remainder

Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspecified by the MIPS architecture
and depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrc1, Src2 Rotate Left
ror Rdest, Rsrc1, Src2 Rotate Right

Rotate the contents of register Rsrc1 left (right) by the distance indicated by Src2 and put the
result in register Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

5 of 12 11.10.2006 16:24

Shift the contents of register Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2) and put
the result in register Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)

Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate

Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

Constant-Manipulating Instructions

li Rdest, imm Load Immediate

Move the immediate imm into register Rdest.

lui Rdest, imm Load Upper Immediate

Load the lower halfword of the immediate imm into the upper halfword of register Rdest. The
lower bits of the register are set to 0.

Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

seq Rdest, Rsrc1, Src2 Set Equal

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal
sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than
sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal
sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

6 of 12 11.10.2006 16:24

slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrc1, Src2 Set Not Equal

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch instructions
use a signed 16-bit offset field; hence they can jump 2^15-1 instructions (not bytes) forward or 2^15
instructions backwards. The jump instruction contains a 26 bit address field.

b label Branch instruction

Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true
(false).

beq Rsrc1, Src2, label Branch on Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

beqz Rsrc, label Branch on Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrc1, Src2, label Branch on Greater Than Equal
bgeu Rsrc1, Src2, label Branch on GTE Unsigned

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

7 of 12 11.10.2006 16:24

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than
bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than Src2.

bgtz Rsrc, label Branch on Greater Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.

ble Rsrc1, Src2, label Branch on Less Than Equal
bleu Rsrc1, Src2, label Branch on LTE Unsigned

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less than
or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal
to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal to
0 or less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrc1, Src2, label Branch on Less Than
bltu Rsrc1, Src2, label Branch on Less Than Unsigned

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less than
Src2.

bltz Rsrc, label Branch on Less Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are not equal
to Src2.

bnez Rsrc, label Branch on Not Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

j label Jump

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

8 of 12 11.10.2006 16:24

Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register

Unconditionally jump to the instruction at the label or whose address is in register Rsrc. Save
the address of the next instruction in register 31.

jr Rsrc Jump Register

Unconditionally jump to the instruction whose address is in register Rsrc.

Load Instructions

la Rdest, address Load Address

Load computed address, not the contents of the location, into register Rdest.

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte

Load the byte at address into register Rdest. The byte is sign-extended by the lb, but not the
lbu, instruction.

ld Rdest, address Load Double-Word

Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword

Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is
sign-extended by the lh, but not the lhu, instruction

lw Rdest, address Load Word

Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor z

Load the word at address into register Rdest of coprocessor z (0-3).

lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

ulh Rdest, address Unaligned Load Halfword

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

9 of 12 11.10.2006 16:24

ulhu Rdest, address Unaligned Load Halfword Unsigned

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. The
halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word

Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

Store Instructions

sb Rsrc, address Store Byte

Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword

Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word

S tore the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor z

Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right

Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword

Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word

Store the word from register Rsrc at the possibly-unaligned address.

Data Movement Instructions

move Rdest, Rsrc Move

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

10 of 12 11.10.2006 16:24

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These instructions
move values to and from these registers. The multiply, divide, and remainder instructions described above
are pseudoinstructions that make it appear as if this unit operates on the general registers and detect error
conditions such as divide by zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo

Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo

Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these registers and the
CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z

Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU registers Rdest and
Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z

Move the contents of CPU register Rsrc to coprocessor z’s register CPdest.

Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-bit) and double
precision (64-bit) floating point numbers. This coprocessor has its own registers, which are numbered f0-f31.
Because these registers are only 32-bits wide, two of them are required to hold doubles. To simplify matters,
floating point operations only use even-numbered registers - including instructions that operate on single
floats. Values are moved in or out of these registers a word (32-bits) at a time by lwc1, swc1, mtc1, and mfc1
instructions described above or by the l.s, l.d, s.s, and s.d pseudoinstructions described below. The flag set
by floating point comparison operations is read by the CPU with its bc1t and bc1f instructions. In all
instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are floating point registers (e.g., f2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single

Compute the absolute value of the floating float double (single) in register FRsrc and put it in
register FRdest.

add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

11 of 12 11.10.2006 16:24

add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single

Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put it
in register FRdest.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single

Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer

Convert the double or single precision floating point number in register FRsrc to an integer and
put it in register FRdest.

div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single

Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

l.d FRdest, address Load Floating Point Double
l.s FRdest, address Load Floating Point Single

SPIM Quick Reference https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

12 of 12 11.10.2006 16:24

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single

Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single

Compute the product of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double
s.s FRdest, address Store Floating Point Single

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single

Compute the difference of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

Exception and Trap Instructions

rfe Return From Exception

Restore the Status register.

syscall System Call

Register v0 contains the number of the system call (see System Services) provided by SPIM.

break n Break

Cause exception n. Exception 1 is reserved for the debugger.

nop No operation

Do nothing.

