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1 Introduction
The aim of this collection of notes is to offer some support for the course on Se-
mantics and Verification by introducing three of the basic notions that we shall use
to describe, specify and analyze reactive systems, namely
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• Milner’s Calculus of Communicating Systems (CCS) [15],

• the model of Labelled Transition Systems (LTSs) [12] and

• Hennessy-Milner Logic (HML) [9] and its extension with recursive defini-
tions of formulae [14].

The Semantics and Verification course presents a general theory of reactive systems
and its applications. Our aims in this course are to show how

1. to describe actual systems using terms in our chosen models—that is, either
as terms in the process description language CCS or as labelled transition
systems—,

2. to offer specifications of the desired behaviour of systems either as terms of
our models or as a formulae in HML and

3. to manipulate these descriptions, possibly (semi-)automatically in order to
obtain an analysis of the behaviour of the model of the system under consid-
eration.

At the end of the course, the students will be able to describe non-trivial reactive
systems and their specifications using the aforementioned models, and verify the
correctness of a model of a system with respect to given specifications either man-
ually or by using automatic verification tools like the Concurrency Workbench and
UPPAAL.

Our, somewhat ambitious, aim is therefore to present a model of reactive sys-
tems that supports their design, specification and verification. Moreover, since
many real-life systems are hard to analyze manually, we should like to have com-
puter support for our verification tasks. This means that all the models and lan-
guages that we shall use in this course need to have a formal syntax and semantics.
These requirements of formality are not only necessary in order to be able to build
computer tools for the analysis of systems’ descriptions, but are also fundamental
in agreeing upon what the terms in our models are actually intended to describe in
the first place. Moreover, as Donald Knuth once wrote,

“A person does not really understand something until after teaching
it to a computer, i.e. expressing it as an algorithm.. . . An attempt to
formalize things as algorithms leads to a much deeper understanding
than if we simply try to comprehend things in the traditional way.”

The pay-off of using formal models with an explicit formal semantics to describe
our systems will therefore be the possibility of devising algorithms for the anima-
tion, simulation and verification of system models. These would be impossible to
obtain if our models were specified only in an informal notation.

3

http://www.dcs.ed.ac.uk/home/cwb/
http://www.uppaal.com/


Now that we know what to expect from these notes, and from the lectures
that they are supposed to complement, it is time to get to work. We shall begin
our journey through the beautiful land of “Concurrency Theory” by introducing a
prototype description language for reactive systems and its semantics. However,
before setting off on such an enterprise, we should describe in more detail what we
actually mean with the term “reactive system”.

2 What Are Reactive Systems?
The “standard” view of computing systems is that, at a high level of abstraction,
these may be considered as black boxes that take inputs and provide appropriate
outputs. This view agrees with the description of algorithmic problems. An algo-
rithmic problem is specified by giving its collection of legal inputs, and, for each
legal input, its expected output. In an imperative setting, an abstract view of a
computing system may therefore be given by describing how it transforms an ini-
tial state—that is a function from variables to their values—to a final state. This
function will, in general, be partial—that is it may be undefined for some initial
state—to capture that the behaviour of a computing systemmay be non-terminating
for some input states. For example, the effect of the program

S = z  x;x y; y  z

is described by the function [[S]] from states to states defined thus:

[[S]] = �s. s[x 7! s(y), y 7! s(x), z 7! s(x)] ,

where the state s[x 7! s(y), y 7! s(x), z 7! s(x)] is the one in which the value of
variable x is the value of y in state s and that of variables y and z is the value of x
in state s. The values of all of the other variables are those they had in state s. This
state transformation is a way of formally describing that the intended effect of S is
essentially to swap the values of the variables x and y.

On the other hand, the effect of the program

U = while true do skip

is described by the partial function from states to states given by:

[[U ]] = �s. undefined ,

that is the always undefined function. This captures the fact that the computation
of U never produces a result (final state) irrespective of the initial state.
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In this view of computing systems, non-termination is a highly undesirable
phenomenon. An algorithm that fails to terminate on some inputs is not one the
users of a computing system would expect to have to use. A moment of reflection,
however, should make us realize that we already use many computing systems
whose behaviour cannot be readily described as a function from inputs to outputs—
not least because, at some level of abstraction, these systems are inherently meant
to be non-terminating. Examples of such computing systems are:

• operating systems,

• communication protocols,

• control programs and

• software running in embedded system devices like mobile telephones.

At a high level of abstraction, the behaviour of a control program can be seen to be
governed by the following pseudo-code algorithm skeleton

loop
read the sensors’ values at regular intervals
depending on the sensors’ values trigger the relevant actuators

forever

The aforementioned examples, and many others, are examples of computing sys-
tems that interact with their environment by exchanging information with it. Like
the neurons in a human brain, these systems react to stimuli from their computing
environment (in the example control program above these are variations in the val-
ues of the sensors) by possibly changing their state or mode of computation, and
in turn influence their environment by sending back some signals to it, or initiating
some operations whose effect it is to affect the computing environment (this is the
role played by the actuators in the example control program). David Harel and
Amir Pnueli coined the term reactive system in [8] to describe a system that, like
the aforementioned ones, computes by reacting to stimuli from its environment.

As the above examples and discussion indicate, reactive systems are inherently
parallel systems, and a key role in their behaviour is played by communication and
interaction with their computing environment. A “standard” computing system
can also be viewed as a reactive system in which interaction with the environment
only takes place at the beginning of the computation (when inputs are fed to the
computing device) and at the end (when the output is received). On the other hand,
all the example systems given before maintain a continuous interaction with their
environment, and we may think of both the computing system and its environment
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as parallel processes that communicate one with the other. In addition, unlike
with “standard” computing systems, as again nicely exemplified by the skeleton
of a control program given above, non-termination is a desirable feature of some
reactive systems. We certainly do not expect the operating systems running on our
computers or the control program monitoring a nuclear reactor to terminate!

Now that we have an idea of what reactive systems are, and of the key aspects
of their behaviour, we can begin to consider what an appropriate abstract model
for this class of systems should offer. In particular, such a model should allow
us to describe the behaviour of collections of (possibly non-terminating) parallel
processes that may compute independently and interact with one another. It should
provide us with facilities for the description of well-known phenomena that appear
in the presence of concurrency and are familiar to us from the world of operating
systems and parallel computation in general (e.g., deadlock, livelock, starvation
and so on). Finally, in order to abstract from implementation dependent issues
having to do with, e.g., scheduling policies, the chosen model should permit a
clean description of non-determinism—a most useful modelling tool in Computer
Science.

Our aim in the remainder of these notes will be to present a general purpose
theory that can be used to describe, and reason about, any collection of interacting
processes. The approach we shall present will make use of a collection of models
and formal techniques that is often referred to as Process Theory. The key ingredi-
ents in this approach are:

• (Process) Algebra,

• Automata/labelled transition systems,

• Structural Operational Semantics and

• Logic.

These ingredients give the foundations for the development of (semi-)automatic
verification tools for reactive systems that support various formal methods for val-
idation and verification that can be applied to the analysis of highly non-trivial
computing systems. The development of these tools requires in turn advances in
algorithmics, and via the increasing complexity of the analyzed designs feeds back
to the theory development phase by suggesting the invention of new languages and
models for the description of reactive systems.

Unlike in the setting of sequential programs, where we often kid ourselves
into believing that the development of correct programs can be done without any
recourse to “formalism”, it is a well-recognized fact of life that the behaviour of
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even very short parallel programs may be very hard to analyze and understand.
Indeed, analyzing these programs requires a careful consideration of issues related
to the interactions amongst their components, and even imagining all of these is
often a mind-boggling task. As a result, the techniques and tools that we shall
present in this course are becoming widely accepted in the academic and industrial
communities that develop reactive systems.

3 Process Algebras
The first ingredient in the approach to the theory of reactive systems presented in
this course is a prototypical example of a process algebra. Process algebras are
prototype specification languages for reactive systems. They evolved from the in-
sights of many outstanding researchers over the last thirty years, and a brief history
of the evolution of the original ideas that led to their development may be found
in [1]. A crucial initial observation that is at the heart of the notion of process
algebra is due to Milner, who noticed that concurrent processes have an algebraic
structure. For example, once we have built two processes P and Q, we can form a
new process by combining P and Q sequentially or in parallel. The result of these
combinations will be a new process whose behaviour depends on that of P and Q

and on the operation that we have used to compose them. This is the first sense
in which these description languages are algebraic: they consist of a collection of
operations for building new process descriptions from existing ones.

Since these languages aim at specifying parallel processes that may interact
with one another, a key issue that needs to be addressed is how to describe commu-
nication/interaction between processes running at the same time. Communication
amounts to information exchange between a process that produces the informa-
tion (the sender), and a process that consumes it (the receiver). We often think of
this communication of information as taking place via some medium that connects
the sender and the receiver. If we are to develop a theory of communicating sys-
tems based on this view, then we have to decide upon the communication medium
used in inter-process communication. Several possible choices immediately come
to mind. Processes may communicate via, e.g., (un)bounded buffers, shared vari-
ables, some unspecified ether, or the tuple spaces used by Linda-like languages [6].
Which one do we choose? The answer is not at all clear, and each specific choice
may in fact reduce the applicability of our language and the models that support it.
A language that can properly describe processes that communicate via, say, FIFO
buffers may not readily allow us to specify situations in which processes interact
via shared variables, say.

The solution to this riddle is both conceptually simple and general. One of the
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crucial original insights of figures like Hoare and Milner is that we need not distin-
guish between active components like senders and receivers, and passive ones like
the aforementioned kinds of communication media. All of these may be viewed
as processes—that is, as systems that exhibit behaviour. All of these processes can
interact via message-passing modelled as synchronized communication, which is
the only basic mode of interaction. This is the key idea underlying Hoare’s Com-
municating Sequential Processes (CSP) [10, 11], a highly influential proposal for
a programming language for parallel programs, and Milner’s Calculus of Commu-
nicating Systems (CCS) [15], the paradigmatic process algebra.

4 The Language CCS
We shall now introduce the language CCS. We begin by informally presenting the
process constructions allowed in this language and their semantics in Sect. 4.1. We
then proceed to put our developments on a more formal footing in Sect. 4.2.

4.1 Some CCS Process Constructions

It is useful to begin by thinking of a CCS process as a black box. This black box
may have a name that identifies it, and has a process interface. This interface de-
scribes the collection of communication ports, also referred to as channels, that the
process may use to interact with other processes that reside in its environment, to-
gether with an indication of whether it uses these ports for inputting or outputting
information. For example, the drawing in Table 1 pictures the interface for a pro-
cess whose name is CS (for Computer Scientist). This process may interact with
its environment via three ports, or communication channels, namely coffee, coin
and pub. The port coffee is used for input, whereas the ports coin and pub are used
by process CS for output. In general, given a port name a, we use ā for output on
port a. We shall often refer to labels as coffee or coin as actions.

A description like the one given in Table 1 only gives static information about
a process. What we are most interested in is the behaviour of the process being
specified. The behaviour of a process is described by giving a “CCS program”.
The idea being that, as we shall see soon, the process constructions that are used
in building the program allow us to describe both the structure of a process and its
behaviour.

Let us begin by introducing the constructs of the language CCS by means of
examples. The most basic process of all is the process 0 (read “nil”). This is
the most boring process imaginable, as it performs no action whatsoever. The
process 0 offers the prototypical example of a deadlocked behaviour—one that
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Table 1: The interface for process CS

cannot proceed any further in its computation.
The most basic process constructor in CCS is action prefixing. Two example

processes built using 0 and action prefixing are

a match: strike.0 and

a complex match: take.strike.0.

Intuitively, a match is a process that dies when stricken (i.e., that becomes the
process 0 after executing the action strike), and a complex match is one that needs
to be taken before it can behave like a match. More in general, the formation rule
for action prefixing says that:

If P is a process and a is a label, then a.P is a process.

The idea is that a label, like strike or pub, will denote an input or output action on
a communication port, and that the process a.P is one that begins by performing
action a and behaves like P thereafter.

We have already mentioned that processes can be given names, very much like
procedures can. This means that we can introduce names for (complex) processes,
and that we can use these names in defining other process descriptions. For in-
stance, we can give the name Match to the complex match thus:

Match def= take.strike.0 .

The introduction of names for processes allows us to give recursive definitions of
process behaviours—compare with the recursive definition of procedures or meth-
ods in your favourite programming language. For instance, we may define the
behaviour of an everlasting clock thus:

Clock def= tick.Clock .
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Note that, since the process name Clock is a short-hand for the term on the right-
hand side of the above equation, we may repeatedly replace the name Clock with
its definition to obtain that

Clock def
= tick.Clock
= tick.tick.Clock
= tick.tick.tick.Clock
...
= tick. . . . .tick| {z }

n-times

.Clock ,

for each positive integer n.
As another recursive process specification, consider that of a simple coffee

vending machine:
CM def

= coin.coffee.CM . (1)

This is a machine that is willing to input a coin, deliver coffee to its customer, and
thereafter return to its initial state.

The CCS constructs that we have presented so far would not allow us to de-
scribe the behaviour of a vending machine that allows its paying customer to
choose between tea and coffee, say. In order to allow for the description of pro-
cesses whose behaviour may follow different patterns of interaction with their en-
vironment, CCS offers the choice operator, which is written “+”. For example, a
vending machine offering either tea or coffee may be described thus:

CTM def
= coin.(coffee.CTM+ tea.CTM) . (2)

The idea here is that, after having input a coin, the process CTM is willing to
deliver either coffee or tea, depending on its customer’s choice. In general, the
formation rule for choice states that:

If P and Q are processes, then so is P + Q.

The process P +Q is one that has the initial capabilities of both P andQ. However,
choosing to perform initially an action from P will pre-empt the further execution
of actions from Q, and vice versa.

Exercise 4.1 Give a CCS process that describes a coffee machine that may behave
like that given by (1), but may also steal the money it receives and fail at any time.

Exercise 4.2 A finite process graph T is a quadruple (Q, A, �, q

0

), where
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• Q is a finite set of states,

• A is a finite set of labels,

• q

0

2 Q is the start state and

• � : Q⇥A! 2

Q is the transition function.

Using the operators introduced so far, give a CCS process that “describes T”.

It is well-known that a computer scientist working in academia is a machine for
turning coffee into publications. The behaviour of such an academic may be de-
scribed by the CCS process

CS def= pub.coin.coffee.CS . (3)

As made explicit by the above description, a computer scientist is initially keen
to produce a publication—possibly straight out of her doctoral dissertation—, but
she needs coffee to produce her next publication. Coffee is only available through
interaction with the departmental coffee machine CM. In order to describe systems
consisting of two or more processes running in parallel, and possibly interacting
with each other, CCS offers the parallel composition operation |. For example,
the CCS expression CM | CS describes a system consisting of two processes—the
coffee machine CM and the computer scientist CS—that run in parallel one with
the other. These two processes may communicate via the communication ports
they share and use in complementary fashion, namely coffee and coin. By comple-
mentary, we mean that one of the processes uses the port for input and the other
for output. Potential communications are represented in Table 2 by the solid lines
linking complementary ports. The port pub is instead used by the computer scien-
tist to communicate with its research environment, or, more prosaically, with other
processes that may be present in its environment and that are willing to input along
that port. One important thing to note is that the link between complementary ports
in Table 2 denotes that it is possible for the computer scientist and the coffee ma-
chine to communicate in the parallel composition CM | CS. However, we do not
require that they must communicate with one another. Both the computer scien-
tist and the coffee machine could use their complementary ports to communicate
with other reactive systems in their environment. For example, another computer
scientist CS0 can use the coffee machine CM, and, in so doing, make sure that he
can produce publications to beef up his curriculum vitae, and thus be a worthy
competitor for CS in the next competition for a tenured position. (See Table 3.)
Alternatively, the computer scientist may have access to another coffee machine in
its environment, as pictured in Table 4.
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Table 4: The interface for process CM | CS | CM0

In general, given two CCS expressions P and Q, the process P | Q describes a
system in which

• P and Q may proceed independently and

• may communicate via complementary ports.

Since academics like the computer scientist often live in a highly competitive “pub-
lish or perish” environment, it may be fruitful for her to make the coffee machine
CM private to her, and therefore inaccessible to her competitors. To make this
possible, the language CCS offers an operation called restriction, whose aim is to
delimit the scope of channel names in much the same way as variables have scope
in block structured programming languages. For instance, using the operations
\coin and \coffee, we may hide the coin and coffee ports from the environment of
the processes CM and CS. Define

SmUni def= (CM | CS) \ coin \ coffee . (4)

As pictured in Table 5, the restricted coin and coffee ports may now only be used
for communication between the computer scientist and the coffee machine, and are
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not available for interaction with their environment. Their scope is restricted to the
process SmUni. The only port of SmUni that is visible to its environment, e.g., to
the competing computer scientist CS0, is the one via which the computer scientist
CS outputs her publications. In general, the formation rule for restriction is:

If P is a process and L is a set of port names, then P \ L is a process.

In P \ L, the scope of the port names in L is restricted to P—those port names can
only be used for communication within P .

Since a computer scientist cannot live on coffee alone, it is beneficial for her to
have access to other types of vending machines offering, say, chocolate, dried figs
and crisps. The behaviour of these machines may be easily specified by means of
minor variations on (1). For instance, we may define the processes

CHM def
= coin.choc.CHM

DFM def
= coin.figs.DFM

CRM def
= coin.crisps.CRM .

Note, however, that all of these vending machines follow a common behavioural
pattern, and may be seen as specific instances of a generic vending machine that
inputs a coin, dispenses an item and restarts, namely the process

VM def
= coin.item.VM .

All of the aforementioned specific vending machines may be obtained as appropri-
ate “renamings” of VM. For example,

CHM def
= VM[choc/item] ,

where VM[choc/item] is a process that behaves like VM, but outputs chocolate
whenever VM dispenses the generic item. In general,

If P is a process and f is a function from labels to labels satisfying
certain requirements that will be made precise in Sect. 4.2, then P [f ]

is a process.

By introducing the relabelling operation, we have completed our informal tour
of the operations offered by the language CCS for the description of process be-
haviours. We hope that this informal introduction has given our readers a feeling
for the language, and that our readers will agree with us that CCS is indeed a
language based upon very few operations with an intuitively clear semantic inter-
pretation. In passing, we have also hinted at the fact that CCS processes may be
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seen as defining automata which describe their behaviour—see Exercise 4.2. We
shall now expand a little on the connection between CCS expressions and the au-
tomata describing their behaviour. The presentation will again be informal, as we
plan to highlight the main ideas underlying this connection rather than to focus
immediately on the technicalities. The formal connection between CCS expres-
sions and labelled transition systems will be presented in Sect. 4.2 using the tools
of Structural Operational Semantics [18, 20].

4.1.1 The Behaviour of Processes

The key idea underlying the semantics of CCS is that a process passes through
states during an execution; processes change their state by performing actions. For
instance, the process CS defined in (3) can perform action pub and evolve into a
process whose behaviour is described by the CCS expression

CS
1

def
= coin.coffee.CS

in doing so. Process CS
1

can then output a coin, thereby evolving into a process
whose behaviour is described by the CCS expression

CS
2

def
= coffee.CS .

Finally, this process can input coffee, and behave like our good old CS all over
again. Thus the processes CS, CS

1

and CS
2

are the only possible states of the
computation of process CS. Note, furthermore, that there is really no conceptual
difference between processes and their states! By performing an action, a pro-
cess evolves to another process that describes what remains to be executed of the
original one.

In CCS, processes change state by performing transitions, and these transitions
are labelled by the action that caused them. An example state transition is

CS pub! CS
1

,

which says that CS can perform action pub, and become CS
1

in doing so. The op-
erational behaviour of our computer scientist CS is therefore completely described
by the following labelled transition system

CS pub! CS
1

coin! CS
2

coffee! CS .

In much the same way, we can make explicit the set of states of the coffee machine
described in (1) by rewriting that equation thus:

CM def
= coin.CM

1

CM
1

def
= coffee.CM .
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Note that the computer scientist is willing to output a coin in state CS
1

, as wit-
nessed by the transition

CS
1

coin! CS
2

,

and the coffee machine is willing to accept that coin in its initial state, because of
the transition

CM coin! CM
1

.

Therefore, when put in parallel with one another, these two processes may commu-
nicate and change state simultaneously. The result of the communication should
be described as a state transition of the form

CM | CS
1

?! CM
1

| CS
2

.

However, we are now faced with an important design decision—namely, we should
decide what label to use in place of the “?” labelling the above transition. Should
we decide to use a standard label denoting input or output on some port, then a
third process might be able to synchronize further with the coffee machine and
the computer scientist, leading to multi-way synchronization. The choice made
by Milner in his design of CCS is different. In CCS, communication is via hand-
shake, and leads to a state transition that is unobservable, in the sense that it cannot
synchronize further. This state transition is labelled by a new label ⌧ . So the above
transition is indicated by

CM | CS
1

⌧! CM
1

| CS
2

.

In this way, the behaviour of the process SmUni defined by (4) can be described by
the following labelled transition system:

SmUni

pub

✏✏
(CM | CS

1

) \ coin \ coffee

⌧

✏✏
(CM

1

| CS
2

) \ coin \ coffee

⌧

✏✏
(CM | CS) \ coin \ coffee

pub

ii
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Since ⌧ actions are supposed to be unobservable, the following process seems to
be an appropriate high level specification of the behaviour exhibited by process
SmUni:

Spec def= pub.Spec .

Indeed, we expect that SmUni and Spec describe the same observable behaviour,
albeit at different levels of abstraction. We shall see in the remainder of this course
that one of the big questions in process theory is to come up with notions of “be-
havioural equivalence” between processes that will allow us to establish formally
that, for instance, SmUni and Spec do offer the same behaviour. But this is getting
ahead of our story.

4.2 CCS, Formally

Having introduced CCS by example, we now proceed to present formal definitions
for its syntax and semantics.

4.2.1 The Model of Labelled Transition Systems

We have already indicated in our examples how the operational semantics for CCS
can be given in terms of automata—which we have called labelled transition sys-
tems, as customary in concurrency theory. These we now proceed to define, for the
sake of clarity. We first introduce the ingredients in the model of labelled transition
systems informally, and then provide its formal definition.

In the model of labelled transition systems, processes are represented by ver-
tices of certain edge-labelled oriented graphs (the labelled transition systems them-
selves) and a change of process state caused by performing an action is understood
as moving along an edge, labelled by the action name, that goes out of that state.

A labelled transition system consists therefore of a set of states (or processes or
configurations), a set of labels (or actions), and a transition relation! describing
changes in process states: if a process p can perform an action a and become a
process p

0, we write p

a! p

0. Sometimes a state is singled out as the start state in
the labelled transition system under consideration.

Example 4.1 Let us start with the classic example of a tea/coffee vending ma-
chine. The very simplified behaviour of the process which determines the interac-
tion of the machine with a customer can be described as follows. From the initial
state—say, p—representing the situation “waiting for a request”, two possible ac-
tions are enabled. Either the tea button or the coffee button can be pressed (the
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Figure 1: Labelled transition system with initial state p
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Remark 4.1 The definition of a labelled transitions systems allows situations like
that in Figure 1 (where p is the initial state). This means that the state p

2

where the
action c can be performed in a loop is irrelevant for the behaviour of the process
p since p

2

can never be reached from p. This motivates us to introduce the notion
of reachable states. We say that a state p

0 in the transition system representing a
process p is reachable from p iff there exists an oriented path from p to p

0. The
set of all such states is called the set of reachable states. In our example this set
contains exactly two states, namely p and p

1

.

Definition 4.1 [Labelled Transition Systems] A labelled transition system (LTS)
is a triple (Proc,Act, { a!| a 2 Act}), where:

• Proc is a set of states, ranged over by s;

• Act is a set of actions, ranged over by a;

• a!✓ Proc ⇥ Proc is a transition relation, for every a 2 Act. As usual, we
shall use the more suggestive notation s

a! s

0 in lieu of (s, s

0
) 2 a!, and

write s

a9 (read “s refuses a”) iff s a! s

0 for no state s

0.
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For example, the LTS for the process SmUni defined by (4) is formally specified
thus:

Proc = {SmUni, (CM | CS
1

) \ coin \ coffee, (CM
1

| CS
2

) \ coin \ coffee,
(CM | CS) \ coin \ coffee}

Act = {pub, ⌧}
pub! = {(SmUni, (CM | CS

1

) \ coin \ coffee),
((CM | CS) \ coin \ coffee, (CM | CS

1

) \ coin \ coffee)} and
⌧! = {((CM | CS

1

) \ coin \ coffee, (CM
1

| CS
2

) \ coin \ coffee),
((CM

1

| CS
2

) \ coin \ coffee, (CM | CS) \ coin \ coffee)} .

We shall often distinguish a so called start state (or initial state), which is one
selected state in which the system initially starts.

Remark 4.2 Sometimes the transition relations a! are presented as a ternary rela-
tion!✓ Proc ⇥ Act ⇥ Proc and we write s

a! s

0 whenever (s, a, s

0
) 2!. This

is an alternative way to define a labelled transition system and it gives exactly the
same notion as Definition 4.1.

Notation 4.1 Let us now recall a few useful notations that will be used in connec-
tion with labelled transitions systems.

• We can extend the transition relation to the elements of Act⇤ (the set of all
finite strings over Act including the empty string ✏). The definition is as
follows:

– s

✏! s for every s 2 Proc and
– s

aw! s

0 iff there is t 2 Proc such that s

a! t and t

w! s

0, for every
s, s

0 2 Proc, a 2 Act and w 2 Act⇤.
In other words, if w = a

1

a

2

· · · a
n

for a

1

, a

2

. . . , a

n

2 Act then we write
s

w! s

0 whenever there exist states s

1

, . . . , s

n�1

2 Proc such that

s

a

1! s

1

a

2! s

2

a

3! s

3

a

4! · · · an�1! s

n�1

an! s

0
.

For the transition system in Figure 1 we have, for example, that p

✏! p,
p

ab! p and p

1

bab! p.

• We write s! s

0 whenever there is an action a 2 Act such that s a! s

0.
For the transition system in Figure 1 we have, for instance, that p ! p

1

,
p

1

! p, p
2

! p

1

and p

2

! p

2

.
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• We use the notation s

a! meaning that there is some s

0 2 Proc such that
s

a! s

0.
For the transition system in Figure 1 we have, for instance, that p

a! and
p

1

b!.
• We write s !⇤

s

0 iff s

w! s

0 for some w 2 Act⇤. In other words,!⇤ is the
reflexive and transitive closure of the relation!.
For the transition system in Figure 1 we have, for example, that p !⇤

p,
p!⇤

p

1

, and p

2

!⇤
p.

Definition 4.2 [Reachable states] Let T = (Proc,Act, { a!| a 2 Act}) be a la-
belled transition system, and let s 2 Proc be its initial state. We say that s0 2 Proc
is reachable in the transition system T iff s !⇤

s

0. The set of reachable states
contains all states reachable in T .

In the transition system from Figure 1, where p is the initial state, the set of reach-
able states is equal to {p, p

1

}.
Exercise 4.3 What would the set of reachable states in the labelled transition sys-
tem in Figure 1 be if its start state were p

2

?

The step from a process denoted by a CCS expression to the LTS describing its
operational behaviour is taken using the framework of Structural Operational Se-
mantics (SOS) as pioneered by Plotkin in [20]. (The history of the development
of the ideas that led to SOS is recounted by Plotkin himself in [19].) The key idea
underlying this approach is that the collection of CCS process expressions will be
the set of states of a (large) labelled transition system, whose actions will be either
input or output actions on communication ports or ⌧ , and whose transitions will
be exactly those that can be proven to hold by means a collection of syntax-driven
rules. These rules will capture the informal semantics of the CCS operators pre-
sented above in a very simple and elegant way. The operational semantics of a
CCS expression is then obtained by selecting that expression as the start state in
the LTS for the whole language, and restricting ourselves to the collection of CCS
expressions that are reachable from it by following transitions.

4.2.2 The Formal Syntax and Semantics of CCS

The next step in our formal developments is to offer the formal syntax for the
language CCS. Since the set of ports plays a crucial role in the definition of CCS
processes, we begin by assuming a countably infinite collection A of (channel)
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names. (“Countably infinite” means that we have as many names as there are
natural numbers.) The set

¯A = {ā | a 2 A}
is the set of complementary names (or co-names for short). In our informal intro-
duction to the language, we have interpreted names as input actions and co-names
as output actions. We let

L = A [ ¯A
be the set of labels, and

Act = L [ {⌧}
be the set of actions. In our formal developments, we shall use a, b to range over
L, but, as we have already done in the previous section, we shall often use more
suggestive names for channels in applications and examples. By convention, we
assume that ¯

ā = a for each label a. (This also makes sense intuitively because
the complement of output is input.) We also assume a given countably infinite
collection K of process names (or constants). (This ensures that we never run out
of names for processes.)

Definition 4.3 The collection P of CCS expressions is given by the following
grammar:

P,Q ::= K | ↵.P |
X

i2I

P

i

| P | Q | P [f ] | P \ L ,

where

• K is a process name in K;
• ↵ is an action in Act;

• I is an index set;

• f : Act! Act is a relabelling function satisfying the following constraints:

f(⌧) = ⌧ and
f(ā) = f(a) for each label a ;

• L is a set of labels.

We write 0 for an empty sum of processes, i.e.,

0 =

X

i2;

P

i

,
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and P

1

+ P

2

for a sum of two processes, i.e.,

P

1

+ P

2

=

X

i2{1,2}

P

i

.

Moreover, we assume that the behaviour of each process constant is given by a
defining equation

K

def
= P .

As it was already made clear by the previous informal discussion, the constant K
may appear in P .

Our readers can easily check that all of the processes presented in the previous
section are indeed CCS expressions. Another example of a CCS expression is
given by a counter, which is defined thus:

Counter
0

def
= up.Counter

1

(5)

Counter
n

def
= up.Counter

n+1

+ down.Counter
n�1

(n > 0) . (6)

The behaviour of such a process is intuitively clear. For each non-negative integer
n, the process Counter

n

behaves like a counter whose value is n; the ‘up’ actions
increase the value of the counter by one, and the ‘down’ actions decrease it by one.
It would also be easy to construct the (infinite state) LTS for this process based on
its syntactic description, and on the intuitive understanding of process behaviour
we have so far developed. However, intuition alone can lead us to wrong conclu-
sions, and most importantly cannot be fed to a computer! To formally capture our
understanding of the semantics of the language CCS, we therefore introduce the
collection of SOS rules in Table 6. A transition P

↵! Q holds for CCS expressions
P,Q if, and only if, it can be proven using these rules.

A rule like

↵.P

↵! P

is an axiom, as it has no premises—that is, it has no transition above the solid
line. This means that proving that a process of the form ↵.P affords the transition
↵.P

↵! P (the conclusion of the rule) can be done without establishing any further
sub-goal. Therefore each process of the form ↵.P affords the transition ↵.P

↵! P .
As an example, we have that the following transition

pub.coin.coffee.CS pub! coin.coffee.CS (7)

is provable using the above rule for action prefixing.
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Table 6: SOS Rules for CCS (↵ 2 Act, a 2 L)

P

↵! P

0

K

↵! P

0 K

def
= P

↵.P

↵! P

P

j

↵! P

0
jP

i2I

P

i

↵! P

0
j

j 2 I

P

↵! P

0

P | Q

↵! P

0 | Q

Q

↵! Q

0

P | Q

↵! P | Q

0
P

a! P

0
Q

ā! Q

0

P | Q

⌧! P

0 | Q

0

P

↵! P

0

P [f ]

f(↵)! P

0
[f ]

P

↵! P

0

P \ L

↵! P

0 \ L

↵, ↵̄ 62 L

On the other hand, a rule like

P

↵! P

0

K

↵! P

0 K

def
= P

has a non-empty set of premises. This rule says that to establish that constant
K affords the transition mentioned in the conclusion of the rule, we have to first
prove that the body of the defining equation for K, namely the process P , affords
the transition P

↵! P

0. Using this rule, pattern matching and transition (7), we can
prove the transition

CS pub! coin.coffee.CS ,

which we had informally derived before.
The aforementioned rule for constants has a side condition, namely K

def
= P ,

that describes a constraint that must be met in order for the rule to be applicable.
Another example of a rule with a side condition is that for restriction, namely

P

↵! P

0

P \ L

↵! P

0 \ L

↵, ↵̄ 62 L

This rule states that every transition of a term P determines a transition of the
expression P \ L, provided that neither the action producing the transition nor its
complement are in L. For example, as you can check, this side condition prevents



What are the transitions that this process affords? Using the rules for constants
and action prefixing, you should have little trouble in arguing that the only initial
transition for C is

C up! C | down.0 . (9)

What next? Observing that down.0 down! 0, we can infer that

C | down.0 down! C | 0 .

Since it is reasonable to expect that the process C | 0 exhibits the same behaviour
as C—and we shall see later on that this does hold true—, the above transition
effectively brings our process back to its initial state, at least up to behavioural
equivalence. However, this is not all, because, as we have already proven (9), we
have that the transition

C | down.0 up! (C | down.0) | down.0
is also possible. You might find it instructive to continue building a little more of



Exercise 4.7

1. Draw the transition graph for the process name Mutex
1

whose behaviour is
given by the defining equation

Mutex
1

def
= (User | Sem) \ {p, v}

User = p̄.enter.exit.v̄.User

Sem def
= p.v.Sem .

2. Draw the transition graph for the process name Mutex
2

whose behaviour is
given by the defining equation

Mutex
2

def
= ((User|Sem)|User) \ {p, v}

where User and Sem are defined as before.
Would the behaviour of the process change if User was defined as

User def= p̄.enter.v̄.exit.User ?

3. Draw the transition graph for the process name FMutex whose behaviour is
given by the defining equation

FMutex def
= ((User | Sem) | FUser) \ {p, v}

where User and Sem are defined as before, and the behaviour of FUser is
given by the defining equation

FUser def= p̄.enter.(exit.v̄.FUser+ exit.v̄.0)

Do you think that Mutex
2

and FMutex are offering the same behaviour? Can
you argue informally for your answer?

4.2.3 Value Passing CCS

So far, we have only introduced the so-called pure CCS—that is, the fragment of
CCS where communication is pure synchronization and involves no exchange of
data. In many applications, however, processes exchange data when they com-
municate. To allow for a natural modelling of these examples, it is convenient,
although theoretically unnecessary as argued in [15, Sect. 2.8], to extend our lan-
guage to what is usually called value passing CCS. We shall now introduce the new
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features in this language, and their operational semantics, by means of examples.
In what follows, we shall assume for simplicity that the only data type is the set of
non-negative integers.

Assume that we wish to define a one-place buffer B which has the following
behaviour:

• If B is empty, then it is only willing to input one datum along a channel
called ‘in’. The received datum is stored for further output.

• If B is full, then it is only willing to output the successor of the value it stores,
and empties itself in doing so.

This behaviour of B can be modelled in value passing CCS thus:

B def
= in(x).B(x)

B(x)

def
= out(x + 1).B .

Note that the input prefix ‘in’ now carries a parameter that is a variable—in this
case x—whose scope is the process that is prefixed by the input action—in this ex-
ample, B(x). The intuitive idea is that process B is willing to input a non-negative
integer n, bind the received value to x and thereafter behave like B(n)—that is,
like a full one-place buffer storing the value n. The behaviour of the process B(n)

is then described by the second equation above, where the scope of the formal pa-
rameter x is the whole right-hand side of the equation. Note that output prefixes,
like ‘out(x+1)’ above, may carry expressions—the idea being that the value being
output is the one that results from the evaluation of the expression.

The general SOS rule for input prefixing now becomes

a(x).P

a(n)! P [n/x]

n � 0

where we write P [n/x] for the expression that results by replacing each free oc-
currence of the variable x in P with n. The general SOS rule for output prefixing
is instead

ā(e).P

ā(n)! P

n is the result of evaluating e

In value passing CCS, as we have already seen in our definition of the one place
buffer B, process names may be parameterized by value variables. The general
form that these parameterized constants may take is A(x

1

, . . . , x

n

), where A is a
process name, n � 0 and x

1

, . . . , x

n

are distinct value variables. The operational
semantics for these constants is given by the rule
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P [v

1

/x

1

, . . . , v

n

/x

n

]

↵! P

0

A(e

1

, . . . , e

n

)

↵! P

0 A(x

1

, . . . , x

n

)

def
= P and each e

i

has value v

i

To become familiar with these rules, you should apply them to the one-place buffer
B, and derive its possible transitions.

In what follows, we shall restrict ourselves to CCS expressions that have no
free occurrences of value variables—that is, to CCS expressions in which each
occurrence of a value variable, say y, is within the scope of an input prefix of the
form a(y) or of a parameterized constant A(x

1

, . . . , x

n

) with y = x

i

for some
1  i  n. For instance, the expression

a(x).

¯

b(y + 1).0

is disallowed because the single occurrence of the value variable y is bound neither
by an input prefixing nor by a parameterized constant.

Since processes in value passing CCS may manipulate data, it is natural to
add an if bexp then P else Q construct to the language, where bexp is a boolean
expression. Assume, by way of example, that we wish to define a one-place buffer
Pred that computes the predecessor function on the non-negative integers. This
may be defined thus:

Pred def
= in(x).Pred(x)

Pred(x)

def
= if x = 0 then out(0).Pred else out(x� 1).Pred .

We expect Pred(0) to output the value 0 on channel ‘out’, and Pred(n + 1) to
output n on the same channel for each non-negative integer n. The SOS rules for
if bexp then P else Q will allow us to prove this formally. They are the expected
ones, namely

P

↵! P

0

if bexp then P else Q

↵! P

0 bexp is true

and
Q

↵! Q

0

if bexp then P else Q

↵! Q

0 bexp is false

Exercise 4.8 Consider a one place buffer defined by

Cell def
= in(x).Cell(x)

Cell(x)

def
= out(x).Cell .
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Use the Cell to define a two-place bag and a two-place FIFO queue. Give specifi-
cations of the expected behaviour of these processes, and use the operational rules
given above to convince yourselves that your implementations are correct.

Exercise 4.9 Consider the process B defined thus:

B def
= push(x).(C(x)

_

B) + empty.B

C(x)

def
= push(y).(C(y)

_C(x)) + pop(x).D

D def
= o(x).C(x) + ē.B ,

where the linking combinator P_Q is as follows:

P_Q = (P[p

0
/p, e

0
/e, o

0
/o] | Q[p

0
/push, e0

/empty, o0
/pop]) \ {p

0
, o

0
, e

0} .

Draw an initial fragment of the transition graph for this process. What behaviour
do you think B implements?

Exercise 4.10 (For the theoretically minded) Prove that the operational seman-
tics for value passing CCS we have given above is in complete agreement with the
semantics for this language via translation into the pure calculus given by Milner
in [15, Sect. 2.8].

5 Behavioural Equivalence
We have previously remarked that CCS, like all other process algebras, can be used
to describe both implementations of processes and specifications of their expected
behaviours. A language like CCS therefore supports the so-called single language
approach to process theory—that is, the approach in which a single language is
used to describe both actual processes and their specifications. An important in-
gredient of these languages is therefore a notion of behavioural equivalence or
behavioural approximation between processes. One process description, say SYS,
may describe an implementation, and another, say SPEC, may describe a speci-
fication of the expected behaviour. To say that SYS and SPEC are equivalent is
taken to indicate that these two processes describe essentially the same behaviour,
albeit possibly at different levels of abstraction or refinement. To say that, in some
formal sense, SYS is an approximation of SPEC means roughly that every aspect
of the behaviour of this process is allowed by the specification SPEC, and thus that
nothing unexpected can happen in the behaviour of SYS. This approach to program
verification is also sometimes called implementation verification.
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We have already informally argued that some of the processes that we have met
so far ought to be considered behaviourally equivalent. For instance, we claimed
that the behaviour of the process SmUni defined in (4) should be considered equiv-
alent to that of the specification

Spec def= pub.Spec ,

and that the process C in (8) behaves like a counter. Our order of business now will
be to introduce a suitable notion of behavioural equivalence that will allow us to
establish these expected equalities and many others.

Before doing so, it is however instructive to consider the criteria that we expect
a suitable notion of behavioural equivalence for processes to meet. First of all,
we have already used the term “equivalence” several times, and since this is a
mathematical notion that some of you may not have met before, it is high time to
define it precisely.

Definition 5.1 LetX be a set. A binary relation overX is a subset ofX ⇥X , the
set of pairs of elements ofX . IfR is a binary relation overX , we often write xRy

instead of (x, y) 2 R.
An equivalence relation over X is a relation that satisfies the following con-

straints:

• R is reflexive—that is, x R x for each x 2 X;

• R is symmetric—that is, x R y implies y R x, for all x, y 2 X; and

• R is transitive—that is, x R y and y R z imply x R z, for all x, y, z 2 X .

A reflexive, transitive relation is a pre-order.

An equivalence relation is therefore a more abstract version of the notion of equal-
ity that we are familiar with since elementary school.

Exercise 5.1 Which of the following relations over the set of non-negative integers
IN is an equivalence relation?

• The identity relation I = {(n, n) | n 2 IN}.
• The universal relation U = {(n, m) | n, m 2 IN}.
• The standard  relation.

• The parity relation M

2

= {(n, m) | n, m 2 IN, n mod 2 = m mod 2}.
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Since we expect that each process is a correct implementation of itself, a relation
used to support implementation verification should certainly be reflexive. More-
over, as we shall now argue, it should also be transitive—at least if it is to support
stepwise derivation of implementations from specifications. In fact, assume that
we wish to derive a correct implementation from a specification via a sequence of
refinement steps which are known to preserve some behavioural relation R. In this
approach, we might begin from our specification Spec and transform it into our
implementation Imp via a sequence of intermediate stages Spec

i

(0  i  n) thus:

Spec = Spec
0

R Spec
1

R Spec
2

R · · · R Spec
n

= Imp .

Since each of the steps above preserves the relation R, we would like to conclude
that Imp is a correct implementation of Spec with respect to R—that is, that

SpecR Imp

holds. This is guaranteed to be true if the relation R is transitive.
From the above discussion, it follows that a relation supporting implementation

verification should at least be a preorder. The relations considered in the classic
theory of CCS, and in the main body of these notes, are also symmetric, and are
therefore equivalence relations.

Another intuitively desirable property that an equivalence relation R that sup-
ports implementation verification should have is that it is a congruence. This means
that process descriptions that are related by R can be used interchangeably as parts
of a larger process description without affecting its overall behaviour. More pre-
cisely, if P R Q and C[ ] is a program fragment with “a hole”, then

C[P ] R C[Q] .

Finally, we expect our notion of relation supporting implementation verification to
be based on the observable behaviour of processes, rather than on their structure,
the actual name of their states or the number of transitions they afford. Ideally,
we should like to identify two processes unless there is some sequence of “inter-
actions” that an “observer” may have with them leading to different “outcomes”.
The lack of consensus on what constitutes an appropriate notion of observable be-
haviour for reactive systems has led to a large number of proposals for behavioural
equivalences for concurrent processes. (See the study [7], where van Glabbeek
presents the linear time-branching time spectrum—a lattice of known behavioural
equivalences and preorders over labelled transition systems, ordered by inclusion.)
In our search for a reasonable notion of behavioral relation to support implementa-
tion verification, we shall limit ourselves to presenting a tiny sample of these.

So let’s begin our search!
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5.1 Trace Equivalence: A First Attempt

Labelled transition systems (LTSs) [12] are a fundamental model of concurrent
computation, which is widely used in light of its flexibility and applicability. In
particular, they are the prime model underlying Plotkin’s Structural Operational
Semantics [20] and, following Milner’s pioneering work on CCS [15], are by now
the standard semantic model for various process description languages.

As we have already seen, LTSs model processes by explicitly describing their
states and their transitions from state to state, together with the actions that pro-
duced them. Since this view of process behaviours is very detailed, several notions
of behavioural equivalence and preorder have been proposed for LTSs. The aim
of such behavioural semantics is to identify those (states of) LTSs that afford the
same “observations”, in some appropriate technical sense.

Now, LTSs are essentially (possibly infinite state) automata, and the classic
theory of automata suggests a ready made notion of equivalence for them, and thus
for the CCS processes that denote them.

Let us say that a trace of a process P is a sequence ↵

1

· · · ↵
k

2 Act⇤ (k � 0)
such that there exists a sequence of transitions

P = P

0

↵

1! P

1

↵

2! · · · ↵k! P

k

,

for some P

1

, . . . , P

k

. We write Traces(P ) for the collection of traces of P . Since
Traces(P ) describes all the possible finite sequences of interactions that we may
have with process P , it is reasonable to require that our notion of behavioural
equivalence only relates processes that afford the same traces, or else we should
have a very good reason for telling them apart—namely a sequence of communi-
cations that can be performed with one, but not with the other. This means that, for
all processes P and Q, we require that

if P and Q are behaviourally equivalent, then Traces(P ) = Traces(Q) . (10)

Taking the point of view of standard automata theory, and abstracting from the no-
tion of “accept state” that is missing altogether in our treatment, an automaton may
be completely identified by its set of traces, and thus two processes are equivalent
if, and only if, they afford the same traces.

This point of view is totally justified and natural if we view our LTSs as non-
deterministic devices that may generate or accept sequences of actions. However,
is it still a reasonable one if we view our automata as reactive machines that interact
with their environment?

To answer this questions, consider the coffee and tea machine CTM defined as
in (2), and compare it with the following one:

CTM0 def
= coin.coffee.CTM0

+ coin.tea.CTM0
. (11)
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You should be able to convince yourselves that CTM and CTM0 afford the same
traces. However, if you were a user of the coffee and tea machine who wants coffee
and hates tea, which machine would you like to interact with? We certainly would
prefer to interact with CTM as that machine will give us coffee after receiving a
coin, whereas CTM0 may refuse to deliver coffee after having accepted our coin!

This informal discussion may be directly formalized within CCS by assuming
that the behaviour of the coffee starved user is described by the process

CA def
= coin.coffee.CA .

Consider now the terms

(CA | CTM) \ {coin, coffee, tea}
and

(CA | CTM0
) \ {coin, coffee, tea}

that we obtain by forcing interaction between the coffee addict CA and the two
vending machines. Using the SOS rules for CCS, you should convince yourselves
that the former term can only perform an infinite computation consisting of ⌧ -
labelled transitions, whereas the second term can deadlock thus:

(CA |CTM0
)\ {coin, coffee, tea} ⌧! (coffee.CA | tea.CTM0

)\ {coin, coffee, tea} .

Note that the target term of this transition captures precisely the deadlock situation
that we intuitively expected to have, namely that the user only wants coffee, but
the machine is only willing to deliver tea. So trace equivalent terms may exhibit
different deadlock behaviour when made to interact with other parallel processes—
a highly undesirable state of affairs.

In light of the above example, we are forced to reject the law

↵.(P + Q) = ↵.P + ↵.Q ,

which is familiar from the standard theory of regular languages, for our desired
notion of behavioural equivalence. (Can you see why?) Therefore we need to
refine our notion of equivalence in order to differentiate processes that, like the two
vending machines above, exhibit different reactive behaviour while still having the
same traces.

Exercise 5.2 A completed trace of a process P is a sequence ↵

1

· · · ↵
k

2 Act⇤
(k � 0) such that there exists a sequence of transitions

P = P

0

↵

1! P

1

↵

2! · · · ↵k! P

k

9 ,
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for some P

1

, . . . , P

k

. The completed traces of a process may be seen as capturing
its deadlock behaviour, as they are precisely the sequences of actions that may lead
the process into a state from which no further action is possible.

1. Do the processes

(CA | CTM) \ {coin, coffee, tea}

and
(CA | CTM0

) \ {coin, coffee, tea}
defined above have the same completed traces?

2. Is it true that if P and Q are two CCS processes affording the same com-
pleted traces and L is a set of labels, then P \ L and Q \ L also have the
same completed traces?

5.2 Strong Bisimilarity

Our aim in this section will be to present one of the key notions in the theory of
processes, namely strong bisimulation. In order to motivate this notion intuitively,
let us reconsider once more the two processes CTM and CTM0 that we used above
to argue that trace equivalence is not a suitable notion of behavioural equivalence
for reactive systems. The problem was that, as fully formalized in Exercise 5.2, the
trace equivalent processes CTM and CTM0 exhibited different deadlock behaviour
when made to interact with a third parallel process, namely CA. In hindsight, this
is not overly surprising. In fact, when looking purely at the (completed) traces of a
process, we focus only on the sequences of actions that the process may perform,
but do not take into account the communication capabilities of the intermediate
states that the process traverses as it computes. As the above example shows,
the communication potential of the intermediate states does matter when we may
interact with the process at all times. In particular, there is a crucial difference
in the capabilities of the states reached by CTM and CTM0 after inputting a coin.
Indeed, after accepting a coin the machine CTM always enters a state in which it
is willing to output either coffee or tea, depending on what its user wants, whereas
the machine CTM0 can only enter a state in which it is willing to deliver either
coffee or tea, but not both.

The lesson that we may learn from the above discussion is that a suitable notion
of behavioural relation between reactive systems should allow us to distinguish
processes that may have different deadlock potential when made to interact with
other processes. Such a notion of behavioural relation must take into account the
communication capabilities of the intermediate states that processes may reach as
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they compute. One way to ensure that this holds is to require that in order for two
processes to be equivalent, not only they should afford the same traces, but, in some
formal sense, the states that they reach should still be equivalent. You can easily
convince yourselves that trace equivalence does not meet this latter requirement,
as the states that CTM and CTM0 may reach after inputting a coin are not trace
equivalent.

The classic notion of strong bisimulation equivalence, introduced by David
Park in [17], formalizes the informal requirements introduced above in a very ele-
gant way.

Definition 5.2 [Strong Bisimulation] A binary relation R over the set of states of
an LTS is a bisimulation iff whenever s

1

R s

2

and ↵ is an action:

- if s
1

↵! s

0
1

, then there is a transition s

2

↵! s

0
2

such that s0
1

R s

0
2

;

- if s
2

↵! s

0
2

, then there is a transition s

1

↵! s

0
1

such that s0
1

R s

0
2

.

Two states s and s

0 are bisimilar, written s ⇠ s

0, iff there is a bisimulation that
relates them. Henceforth the relation ⇠ will be referred to as strong bisimulation
equivalence or strong bisimilarity.

Since the operational semantics of CCS is given in terms of an LTS whose states
are CCS process expressions, the above definition applies equally well to CCS
processes. Intuitively, a strong bisimulation is a kind of invariant relation between
processes that is preserved by transitions in the sense of Definition 5.2.

Before beginning to explore the properties of strong bisimilarity, let us remark
one of its most appealing features, namely a proof technique that it supports to
show that two processes are strongly bisimilar. Since two processes are strongly
bisimilar if there is a strong bisimulation that relates them, to prove that they are
related by ⇠ it suffices only to exhibit a strong bisimulation that relates them.

Example 5.1 Consider the labelled transition system (Proc,Act, { a!| a 2 Act}),
where

• Proc = {s, s

1

, s

2

, t, t

1

},
• Act = {a, b},
• a!= {(s, s

1

), (s, s

2

), (t, t

1

)} and

• b!= {(s

1

, s

2

), (s

2

, s

2

), (t

1

, t

1

)}.
Here is a graphical representation of this labelled transition system:
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Wewill show that s ⇠ t. In order to do that, we have to define a strong bisimulation
R such that (s, t) 2 R. Let us define it as

R= {(s, t), (s

1

, t

1

), (s

2

, t

1

)} .

The binary relation R can be graphically depicted by dotted lines like in the fol-
lowing picture.

s

a

⇤⇤⌃⌃
⌃⌃

⌃⌃
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⌃⌃

a

��8
88

88
88

88
88

8 t

a

✏✏
s

1

b //
s

2

b

kk
t

1

b

ll

Obviously, (s, t) 2R. We have to show that R is a strong bisimulation, i.e., that it
meets the requirements stated in Definition 5.2. To this end, for each pair of states
from R, we have to investigate all the possible transitions from both states and
see whether they can be matched by corresponding transitions from the other state.
Note that a transition under some label a can be matched only by a transition under
the same label a. We will now do the complete analysis of all steps needed to show
that R is a strong bisimulation, even though they are very simple and tedious.

• The pair (s, t):

– transitions from s:
⇤ s

a! s

1

can be matched by t

a! t

1

and (s

1

, t

1

) 2R
⇤ s

a! s

2

can be matched by t

a! t

1

and (s

2

, t

1

) 2R
⇤ these are all the transitions from s

– transitions from t:
⇤ t

a! t

1

can be matched e.g. by s

a! s

2

and (s

2

, t

1

) 2R (an-
other possibility would be to match it by s

a! s

1

but finding one
possibility is enough)
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⇤ these are all the transitions from t

• The pair (s
1

, t

1

):

– transitions from s

1

:

⇤ s

1

b! s

2

can be matched by t

1

b! t

1

and (s

2

, t

1

) 2R
⇤ these are all the transitions from s

1

– transitions from t

1

:

⇤ t

1

b! t

1

can be matched by s

1

b! s

2

and (s

2

, t

1

) 2R
⇤ these are all the transitions from t

1

• The pair (s
2

, t

1

):

– transitions from s

2

:

⇤ s

2

b! s

2

can be matched by t

1

b! t

1

and (s

2

, t

1

) 2R
⇤ these are all the transitions from s

2

– transitions from t

1

:

⇤ t

1

b! t

1

can be matched by s

2

b! s

2

and (s

2

, t

1

) 2R
⇤ these are all the transitions from t

1

This completes the proof thatR is a strong bisimulation and because (s, t) 2R we
get that s ⇠ t.

In order to prove that e.g. s
1

⇠ s

2

we can use the following relation

R= {(s

1

, s

2

), (s

2

, s

2

)} .

The reader is invited to verify that R is indeed a strong bisimulation.

Example 5.2 In this example we shall demonstrate that it is possible that the initial
state of a labelled transition system with infinitely many reachable states can be
strongly bisimilar to a state from which only finitely many states are reachable.
Consider the labelled transition system (Proc,Act, { a!| a 2 Act}) where

• Proc = {s

i

| i 2 N} [ {t}, where N = {1, 2, 3, . . .} is the set of natural
numbers,

• Act = {a} and
• a!= {(s

i

, s

i+1

) | i 2 N} [ {(t, t)}.
Here is a graphical representation of this labelled transition system:
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We can now observe that s
1

⇠ t because

R= {(s

i

, t) | i 2 N}

is a strong bisimulation and it contains the pair (s

1

, t). The reader is invited to
verify this simple fact.

Consider now the two coffee and tea machines in our running example. We can
argue that CTM and CTM0 are not strongly bisimilar thus. Assume, towards a
contradiction, that CTM and CTM0 are strongly bisimilar. This means that there is
a strong bisimulation R such that

CTM R CTM0
.

Recall that
CTM0 coin! tea.CTM0

.

So, by the second requirement in Definition 5.2, there must be a transition

CTM coin! P

for some process P such that P R tea.CTM0. A moment of thought should be
enough to convince yourselves that the only process that CTM can reach by in-
putting a coin is coffee.CTM+ tea.CTM, so we are requiring that

coffee.CTM+ tea.CTM R tea.CTM0
.

However, now a contradiction is immediately reached. In fact,

coffee.CTM+ tea.CTM coffee! CTM ,

but tea.CTM0 cannot output coffee. Thus the first requirement in Definition 5.2
cannot be met. It follows that our assumption that the two machines were strongly
bisimilar leads to a contradiction. We may therefore conclude that, as claimed, the
processes CTM and CTM0 are not strongly bisimilar.
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Example 5.3 Consider the processes P and Q defined thus:

P

def
= a.P

1

+ b.P

2

P

1

def
= c.P

P

2

def
= c.P

and

Q

def
= a.Q

1

+ b.Q

2

Q

1

def
= c.Q

3

Q

2

def
= c.Q

3

Q

3

def
= a.Q

1

+ b.Q

2

.

We claim that P ⇠ Q. To prove that this does hold, it suffices to argue that the
following relation is a strong bisimulation

R= {(P,Q), (P,Q

3

), (P

1

, Q

1

), (P

2

, Q

2

)} .

We encourage you to check that this is indeed the case.

Exercise 5.3 Consider the processes P and Q defined thus:

P

def
= a.P

1

P

1

def
= b.P + c.P

and

Q

def
= a.Q

1

Q

1

def
= b.Q

2

+ c.Q

Q

2

def
= a.Q

3

Q

3

def
= b.Q + c.Q

2

.

Show that P ⇠ Q holds by exhibiting an appropriate strong bisimulation.

Exercise 5.4 Consider the processes

P

def
= a.(b.0 + c.0) and

Q

def
= a.b.0 + a.c.0 .

Show that P and Q are not strongly bisimilar.
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Before looking at a few more examples, we now proceed to present some of the
general properties of strong bisimilarity. In particular, we shall see that ⇠ is an
equivalence relation, and that it is preserved by all of the constructs in the CCS
language.

The following result states the most basic properties of strong bisimilarity, and
is our first theorem in these notes.

Theorem 5.1 For all LTSs, the relation ⇠ is
1. an equivalence relation,

2. the largest strong bisimulation and

3. satisfies the following property:
s

1

⇠ s

2

iff for each action ↵,

- if s
1

↵! s

0
1

, then there is a transition s

2

↵! s

0
2

such that s0
1

⇠ s

0
2

;

- if s
2

↵! s

0
2

, then there is a transition s

1

↵! s

0
1

such that s0
1

⇠ s

0
2

.

Proof: Consider an LTS (Proc,Act, { ↵!| ↵ 2 Act}). We prove each of the state-
ments in turn.

1. In order to show that⇠ is an equivalence relation over the set of states Proc



We are therefore left to argue that ⇠ is transitive. Assume, to this end, that
s

1

⇠ s

2

and s

2

⇠ s

3

for some states s

1

, s
2

and s

3

contained in Proc. We
claim that s

1

⇠ s

3

also holds. To prove this, recall that, since s

1

⇠ s

2

and
s

2

⇠ s

3

, there are two bisimulationsR andR0 that contain the pairs of states
(s

1

, s

2

) and (s

2

, s

3

), respectively. Consider now the relation

S = {(s

0
1

, s

0
3

) | (s

0
1

, s

0
2

) 2 R and (s

0
2

, s

0
3

) 2 R0
, for some s

0
2

} .

The pair (s

1

, s

3

) is contained in S. (Why?) Moreover, using that R and
R0 are bisimulations, you should be able to show that so is S. Therefore
s

1

⇠ s

3

, as claimed.

2. We aim at showing that ⇠ is the largest strong bisimulation over the set of
states Proc. To this end, observe, first of all, that the definition of ⇠ states
that

⇠ =

[
{R | R is a bisimulation} .

This yields immediately that each bisimulation is included in ⇠. We are
therefore left to show that the right-hand side of the above equation is itself
a bisimulation. This we now proceed to do.
Since we have already shown that ⇠ is symmetric, it is sufficient to prove
that if

(s

1

, s

2

) 2
[

{R | R is a bisimulation} and s

1

↵! s

0
1

, (12)

then there is a state s

0
2

such that s
2

↵! s

0
2

and

(s

0
1

, s

0
2

) 2
[

{R | R is a bisimulation} .

Assume, therefore, that (12) holds. Since

(s

1

, s

2

) 2
[

{R | R is a bisimulation} ,

there is a bisimulation R that contains the pair (s

1

, s

2

). As R is a bisimu-
lation and s

1

↵! s

0
1

, we have that there is a state s

0
2

such that s
2

↵! s

0
2

and
(s

0
1

, s

0
2

) 2 R. Observe now that pair (s0
1

, s

0
2

) is also contained in
[

{R | R is a bisimulation} .

Hence, we have argued that there is a state s

0
2

such that s
2

↵! s

0
2

and

(s

0
1

, s

0
2

) 2 {R | R is a bisimulation} ,

which was to be shown.
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3. We now aim at proving that ⇠ satisfies the following property:
s

1

⇠ s

2

iff for each action ↵,

- if s
1

↵! s

0
1

, then there is a transition s

2

↵! s

0
2

such that s0
1

⇠ s

0
2

;

- if s
2

↵! s

0
2

, then there is a transition s

1

↵! s

0
1

such that s0
1

⇠ s

0
2

.

The implication from left to right is an immediate consequence of the fact
that, as we have just shown, ⇠ is itself a bisimulation. We are therefore left
to prove the implication from right to left. To this end, assume that s

1

and s

2

are two states in Proc having the following property:

(⇤) for each action ↵,
- if s

1

↵! s

0
1

, then there is a transition s

2

↵! s

0
2

such that
s

0
1

⇠ s

0
2

;
- if s

2

↵! s

0
2

, then there is a transition s

1

↵! s

0
1

such that
s

0
1

⇠ s

0
2

.

We shall now prove that s
1

⇠ s

2

holds by constructing a bisimulation that
contains the pair (s

1

, s

2

).
How can we build the desired bisimulation R? First of all, we must add the
pair (s

1

, s

2

) toR because we wish to use it to prove s

1

⇠ s

2

. SinceR should
be a bisimulation, each transition s

1

↵! s

0
1

from s

1

should be matched by a
transition s

2

↵! s

0
2

from s

2

, for some state s

0
2

such that (s0
1

, s

0
2

) 2 R. In light
of the aforementioned property, this can be easily achieved by adding to the
relation R all of the pairs of states contained in ⇠! Since we have already
shown that ⇠ is itself a bisimulation, no more pairs of states need be added
toR.
The above discussion suggests that we consider the relation

R = {(s

1

, s

2

)}[ ⇠ .

Indeed, by construction, the pair (s
1

, s

2

) is contained inR. Moreover, using
property (⇤) and statement 2 of the theorem, it is not hard to prove that R is
a bisimulation. This shows that s

1

⇠ s

2

, as claimed

The proof is now complete. 2

Exercise 5.5 Prove that the relations we have built in the proof of Theorem 5.1 are
indeed bisimulations.
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Exercise 5.6 Assume that the defining equation for the constant K is K

def
= P .

Show that K ⇠ P holds.

Exercise 5.7 Prove that two strongly bisimilar processes afford the same traces,
and thus that strong bisimulation equivalence satisfies the requirement for a be-
havioural equivalence we set out in (10). [Hint: Use induction on the length of the
trace ↵

1

· · · ↵
k

(k � 0) to show that

P ⇠ Q and ↵

1

· · · ↵
k

2 Traces(P ) imply ↵

1

· · · ↵
k

2 Traces(Q) .

Exercise 5.8 Show that the following relations are strong bisimulations:

{(P | Q,Q | P ) | where P,Q are CCS processes}
{(P | 0, P ) | where P is a CCS process}
{((P | Q) | R,P | (Q | R)) | where P,Q,R are CCS processes} .

Conclude that, for all P,Q,R,

P | Q ⇠ Q | P (13)
P | 0 ⇠ P and (14)

(P | Q) | R ⇠ P | (Q | R) . (15)

In what follows, we shall sometimes use the notation ⇧

k

i=1

P

i

, where k � 0 and the
P

i

are CCS processes, to stand for

P

1

| P

2

| · · · | P

k

.

If k = 0, then, by convention, the above term is just 0.
As mentioned before, one of the desirable properties for a notion of behavioural

equivalence is that it should allow us to “replace equivalent processes for equivalent
processes” in any larger process expression without affecting its behaviour. The
following proposition states that this is indeed possible for strong bisimilarity.

Proposition 5.1 Let P,Q,R be CCS processes. Assume that P ⇠ Q. Then

• ↵.P ⇠ ↵.Q, for each action ↵;

• P + R ⇠ Q + R and R + P ⇠ R + Q, for each process R;

• P | R ⇠ Q | R and R | P ⇠ R | Q, for each process R;

• P [f ] ⇠ Q[f ], for each relabelling f ; and

• P \ L ⇠ Q \ L, for each set of labels L.
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Proof: We limit ourselves to showing that ⇠ is preserved by parallel composition
and restriction. We consider these two operations in turn. In both cases, we assume
that P ⇠ Q.

• Let R be a CCS process. We aim at showing that P | R ⇠ Q | R. To
this end, we shall build a bisimulation R that contains the pair of processes
(P | R,Q | R).
Consider the relation

R = {(P

0 | R

0
, Q

0 | R

0
) | P

0 ⇠ Q

0 and P

0
, Q

0
, R

0 are CCS processes } .

You should readily be able to convince yourselves that the pair of processes
(P | R,Q | R) is indeed contained in R, and thus that all we are left to do
to complete our argument is to show that R is a bisimulation. The proof
of this fact will, hopefully, also highlight that the above relation R was not
“built out of thin air”, and will epitomize the creative process that underlies
the building of bisimulation relations.
First of all, observe that, by symmetry, to prove thatR is a bisimulation, it is
sufficient to argue that if (P 0 | R0

, Q

0 | R0
) is contained inR and P

0 | R0 ↵! S

for some action ↵ and CCS process S, then Q

0 | R

0 ↵! T for some CCS
process T such that (S, T ) 2 R. This we now proceed to do.
Assume that (P 0 | R

0
, Q

0 | R

0
) is contained in R and P

0 | R

0 ↵! S for some
action ↵ and CCS process S. We now proceed with the proof by a case
analysis on the possible origins of the transition P

0 | R

0 ↵! S. Recall that
the transition we are considering must be provable using the SOS rules for
parallel composition given in Table 6. Therefore there are three possible
forms that the transition P

0 | R

0 ↵! S may take, namely:

1. P

0 is responsible for the transition and R

0 “stands still”—that is, P 0 |
R

0 ↵! S because P

0 ↵! P

00 and S = P

00 | R

0, for some P

00,
2. R

0 is responsible for the transition and P

0 “stands still”—that is, P 0 |
R

0 ↵! S because R

0 ↵! R

00 and S = P

0 | R

00, for some R

00, or
3. the transition under consideration is the result of a synchronization be-
tween a transition of P

0 and one of R

0—that is, P 0 | R

0 ↵! S because
↵ = ⌧ , P 0 a! P

00,

R



for parallel composition in Table 6, we can infer that

Q

0 | R

0 ↵! Q

00 | R

0
.

By the definition of the relationR, we have that
(P

00 | R

0
, Q

00 | R

0
) 2 R .

We can therefore take T = Q

00 | R

0, and we are done.
2. In this case, we have that R0 ↵! R

00. Using this transition as premise in
the second rule for parallel composition in Table 6, we can infer that

Q

0 | R

0 ↵! Q

0 | R

00
.

By the definition of the relationR, we have that
(P

0 | R

00
, Q

0 | R

00
) 2 R .

We can therefore take T = Q

0 | R

00, and we are done.
3. Since P

0 a! P

00 and P

0 ⇠ Q

0, we have that Q0 a! Q

00 and P

00 ⇠ Q

00,
for someQ

00. Using the transitionsQ0 a! Q

00 andR

0 ā! R

00 as premises
in the third rule for parallel composition in Table 6, we can infer that

Q

0 | R

0 ⌧! Q

00 | R

00
.

By the definition of the relationR, we have that
(P

00 | R

00
, Q

00 | R

00
) 2 R .

We can therefore take T = Q

00 | R

00, and we are done.

Therefore the relation R is a bisimulation, as claimed.

• Let L be a set of labels. We aim at showing that P \ L ⇠ Q \ L. To
this end, we shall build a bisimulation R that contains the pair of processes
(P \ L,Q \ L).
Consider the relation

R = {(P

0 \ L,Q

0 \ L) | P

0 ⇠ Q

0} .

You should readily be able to convince yourselves that the pair of processes
(P \L,Q\L) is indeed contained inR. Moreover, following the lines of the
proof we have just gone through for parallel composition, it is an instructive
exercise to show that
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– the relationR is symmetric and
– if (P

0 \ L,Q

0 \ L) is contained in R and P

0 \ L

↵! S for some action
↵ and CCS process S, then Q

0 \ L

↵! T for some CCS process T such
that (S, T ) 2 R.

You are strongly encouraged to fill in the missing details in the proof. 2

Exercise 5.9 Prove that ⇠ is preserved by action prefixing, summation and rela-
belling.

Exercise 5.10 For each set of labels L and process P , we may wish to build the
process ⌧

L

(P ) that is obtained by turning into a ⌧ each action ↵ performed by P

with ↵ 2 L or ↵̄ 2 L. Operationally, the behaviour of the construct ⌧
L

( ) can be
described by the following two rules:

P

↵! P

0

⌧

L

(P )

⌧! ⌧

L

(P

0
)

if ↵ 2 L or ↵̄ 2 L

P

µ! P

0

⌧

L

(P )

µ! ⌧

L

(P

0
)

if µ = ⌧ or µ, µ̄ 62 L

Prove that ⌧
L

(P ) ⇠ ⌧

L

(Q), whenever P ⇠ Q.
Consider the question of whether the operation ⌧

L

( ) can be defined in CCS
modulo ⇠—that is, can you find a CCS expression C

L

[ ] with a “hole” (a place
holder when another process can be plugged) such that, for each process P ,

⌧

L

(P ) ⇠ C

L

[P ] ?

Recall that we defined the specification of a counter thus:

Counter
0

def
= up.Counter

1

Counter
n

def
= up.Counter

n+1

+ down.Counter
n�1

(n > 0) .

Moreover, we hinted at the fact that that process was “behaviourally equivalent” to
the process C defined by

C def
= up.(C | down.0) .

We can now show that, in fact, C and Counter
0

are strongly bisimilar. To this end,
note that this follows if we can show that the relationR below

{(C | ⇧

k

i=0

P

i

,Counter
n

) | (1) k � 0 ,

(2) P

i

= 0 or P
i

= down.0, for each i ,

(3) the number of i with P

i

= down.0 is n}
is a strong bisimulation. (Can you see why?) Indeed we have that:
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Proposition 5.2 The relationR defined above is a strong bisimulation.

Proof: Assume that
C | ⇧

k

i=1

P

i

R Counter
n

.

By the definition of the relation R, each P

i

is either 0 or down.0, and the number
of P

i

= down.0 is n. We shall now show that

1. if C | ⇧

k

i=1

P

i

↵! P for some action ↵ and process P , then there is some
process Q such that Counter

n

↵! Q and P R Q, and

2. if Counter
n

↵! Q for some some action ↵ and process Q, then there is some
process P such that C | ⇧

k

i=1

P

i

↵! P and P R Q.

We establish these two claims separately.

1. Assume that C | ⇧

k

i=1

P

i

↵! P for some some action ↵ and process P . Then

• either ↵ = up and P = C | down.0 | ⇧

k

i=1

P

i

• or n > 0, ↵ = down and P = C | ⇧

k

i=1

P

0
i

, where the vectors of
processes (P

1

, . . . , P

k

) and (P

0
1

, . . . , P

0
k

) differ in exactly one position
`, and at that position P

`

= down.0 and P

0
`

= 0.

In the former case, argue that the matching transition is

Counter
n

up! Counter
n+1

.

In the latter, argue that the matching transition is

Counter
n

down! Counter
n�1

.

2. Assume that Counter
n

↵! Q for some some action ↵ and process Q. Then

• either ↵ = up and Q = Counter
n+1

• or n > 0, ↵ = down and Q = Counter
n�1

.

Finding matching transitions from C | ⇧

k

i=1

P

i

is left as an exercise for the
reader.

2

Exercise 5.11 Fill in the missing details in the above proof.
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Exercise 5.12 (Simulation) Let us say that a binary relation R over the set of
states of an LTS is a simulation iff whenever s

1

R s

2

and ↵ is an action:

- if s
1

↵! s

0
1

, then there is a transition s

2

↵! s

0
2

such that s0
1

R s

0
2

.

We say that s0 simulates s, written s

<
⇠ s

0, iff there is a simulation R with s R s

0.
Two states s and s

0 are simulation equivalent, written s ' s

0, iff s <
⇠ s

0 and s

0 <
⇠ s

both hold.

1. Prove that <
⇠ is a preorder.

2. Build simulations showing that

a.0 <
⇠ a.a.0 and

a.b.0 + a.c.0 <
⇠ a.(b.0 + c.0) .

Do the converse relations hold?

3. Show that strong bisimilarity is included in simulation equivalence. Does
the converse inclusion also hold?

Exercise 5.13 (For the theoretically minded) Consider the processes

P

def
= a.b.c.0 + a.b.d.0 and

Q

def
= a.(b.c.0 + b.d.0) .

Argue, first of all, that P and Q are not strongly bisimilar. Next show that:

1. P and Q have the same completed traces (see Exercise 5.2);

2. for each process R and set of labels L, the processes

(P | R) \ L and (Q | R) \ L

have the same completed traces.

So P andQ have the same deadlock behaviour in all parallel contexts, even though
strong bisimilarity distinguishes them.

The lesson to be learned from these observations is that more generous notions
of behavioural relation may be necessary to validate some desirable equivalences.
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5.3 Weak Bisimilarity

As we have seen in the previous section, strong bisimilarity affords many of the
properties that we expect a notion of behavioural relation to be used in implemen-
tation verification to have. (See the introduction to Section 5.) In particular, strong
bisimilarity is an equivalence relation that is preserved by all of the CCS opera-
tors, it is the largest strong bisimulation, supports a very elegant proof technique to
establish equivalences between process descriptions and it suffices to establish sev-
eral natural equivalences. For instance, you used strong bisimilarity in Exercise 5.8
to justify the expected equalities

P | Q ⇠ Q | P

P | 0 ⇠ P and
(P | Q) | R ⇠ P | (Q | R) .

Moreover, a wealth of other “structural equivalences” like the ones above may be
proven to hold modulo strong bisimilarity. (See [15, Propositions 7–8].)

Should we look any further for a notion of behavioural equivalence to support
implementation verification? Is there any item on our wish list that is not met by
strong bisimilarity?

You might recall that we stated early on in these notes that ⌧ actions in process
behaviours are supposed to be internal, and thus unobservable. This is a natural
consequence of Milner’s design decision to let ⌧ indicate the result of a successful
communication between two processes. Since communication is binary in CCS,
and observing the behaviour of a process means communicating with it in some
fashion, the unobservable nature of ⌧ actions is the upshot of the assumption that
they cannot be used for further communication. This discussion indicates that a
notion of behavioural equivalence should allow us to abstract from such steps in
process behaviours.

Consider, for instance, the processes a.⌧.0 and a.0. Since ⌧ actions should be
unobservable, we intuitively expect these to be observationally equivalent. Unfor-
tunately, however, the processes a.⌧.0 and a.0 are not strongly bisimilar. In fact,
the definition of strong bisimulation requires that each transition in the behaviour of
one process should be matched by one transition of the other, regardless of whether
that transition is labelled by an observable action or ⌧ , and a.⌧.0 affords the trace
a⌧ , whereas a.0 does not.

In hindsight, this failure of strong bisimilarity to account for the unobservable
nature of ⌧ actions is expected because the definition of strong bisimulation treats
internal actions as if they were ordinary observable actions. What we should like to
have is a notion of bisimulation equivalence that affords all of the good properties
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Start
# pub

(CM
b

| CS0
) \ {coin, coffee}

⌧ . & ⌧

Good Bad
⌧ #
Start

where

Start def
= (CM

b

| CS) \ {coin, coffee} CS def
= pub.CS0

Good def
= (coffee.CM

b

| CS00
) \ {coin, coffee} CS0 def

= coin.CS00

Bad def
= (CM

b

| CS00
) \ {coin, coffee} CS00 def

= coffee.CS .

Table 7: The behaviour of (CM
b

| CS) \ {coin, coffee}

of strong bisimilarity, and abstracts from ⌧ actions in the behaviour of processes.
However, in order to fulfill this aim, first we need to understand what “abstracting
from ⌧ actions” actually means. Does this simply mean that we can “erase” all of
the ⌧ actions in the behaviour of a process? This would be enough to show that
a.⌧.0 and a.0 are equivalent, as the former process is identical to the latter if we
“erase the ⌧ prefix”. But would this work in general?

To understand the issue better, let us make our old friend from the computer
science department, namely the process CS defined in (3), interact with a nasty
variation on the coffee machine CM from (1). This latest version of the coffee
machine delivered to the computer scientist’s office is given by:

CM
b

def
= coin.coffee.CM

b

+ coin.CM
b

. (16)

Note that, upon receipt of a coin, the coffee machine CM
b

can decide to go back to
its initial state without delivering the coffee. You should be able to convince your-
selves that the sequences of transitions in Table 7 describe the possible behaviours
of the system (CM

b

| CS) \ {coin, coffee}. Note that, there are two possible ⌧ -
transitions that stem from the process (CM

b

|CS0
) \ {coin, coffee}, and that one of

them, namely

(CM
b

| CS0
) \ {coin, coffee} ⌧! (CM

b

| CS00
) \ {coin, coffee} ,

leads to a deadlocked state. Albeit directly unobservable, this transition cannot be
ignored in our analysis of the behaviour of this system because it pre-empts the
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other possible behaviour of the machine. So, unobservable actions cannot be just
erased from the behaviour of processes because, in light of their pre-emptive power
in the presence of nondeterministic choices, they may affect what we may observe.

Note that the pre-emptive power of internal transitions is unimportant in the
standard theory of automata as there we are only concerned about the possibility
of processing our input strings correctly. Indeed, as you may recall from your
courses in the theory of automata, the so-called ✏-transitions do not increase the
expressive power of nondeterministic finite automata. In a reactive environment,
on the other hand, this power of internal transitions must be taken into account
in a reasonable definition of process behaviour because it may lead to undesirable
consequences, e.g., the deadlock situation in the above example. We therefore
expect that the behaviour of the process SmUni is not equivalent to that of the
process (CM

b

| CS) \ {coin, coffee} since the latter may deadlock after outputting
a publication, whereas the former cannot.

In order to define a notion of bisimulation that allows us to abstract from inter-
nal transitions in process behaviours, and to differentiate the process SmUni from
(CM

b

| CS) \ {coin, coffee}, we begin by introducing a new notion of transition
relation between processes.

Definition 5.3 Let P and Q be CCS processes. We write P

✏) Q iff there is a
(possibly empty) sequence of ⌧ -labelled transitions that leads from P to Q. (If the
sequence is empty, then P = Q.)

For each action ↵, we write P

↵) Q iff there are processes P

0 and Q

0 such that

P

✏) P

0 ↵! Q

0 ✏) Q .

For each action ↵, we use ↵̂ to stand for ✏ if ↵ = ⌧ , and for ↵ otherwise.

Thus P

↵) Q holds if P can reach Q by performing an ↵-labelled transition, pos-
sibly preceded and followed by sequences of ⌧ -labelled transitions. For example,
a.⌧.0 a) 0 and a.⌧.0 a) ⌧.0 both hold.

In the LTS depicted in Table 7, apart from the obvious one step pub-labelled
transition, we have that

Start pub) Good

Start pub) Bad and

Start pub) Start .

Our order of business will now be to use the new transition relations presented
above to define a notion of bisimulation that can be used to equate processes that
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offer the same observable behaviour despite possibly having very different amounts
of internal computations. The idea underlying the definition of the new notion of
bisimulation is that a transition of a process can now be matched by a sequence of
transitions from the other that has the same “observational content” and leads to a
state that is bisimilar to that reached by the first process.

Definition 5.4 [Weak Bisimulation and Observational Equivalence] A binary rela-
tionR over the set of states of an LTS is a weak bisimulation iff whenever s

1

R s

2

and ↵ is an action:

- if s
1

↵! s

0
1

, then there is a transition s

2

↵̂) s

0
2

such that s0
1

R s

0
2

;

- if s
2

↵! s

0
2

, then there is a transition s

1

↵̂) s

0
1

such that s0
1

R s

0
2

.

Two states s and s

0 are observationally equivalent (or weakly bisimilar), written
s ⇡ s

0, iff there is a weak bisimulation that relates them. Henceforth the relation
⇡ will be referred to as observational equivalence or weak bisimilarity.

Example 5.4 Let us consider the following labelled transition system.

s

⌧ //
s

1

a //
s

2

t

a //
t

1

Obviously s 6⇠ t. On the other hand s ⇡ t because

R= {(s, t), (s

1

, t), (s

2

, t

1

)}

is a weak bisimulation such that (s, t) 2R. It remains to verify that R is indeed a
weak bisimulation.

• Let us examine all possible transitions from the components of the pair (s, t).
If s ⌧! s

1

then t

") t and (s

1

, t) 2R. If t a! t

1

then s

a) s

2

and (s

2

, t

1

) 2R.
• Let us examine all possible transitions from (s

1

, t). If s

1

a! s

2

then t

a) t

1

and (s

2

, t

1

) 2R. Similarly if t a! t

1

then s

1

a) s

2

and again (s

2

, t

1

) 2R.
• Consider now pair (s

2

, t

1

). Since neither s

2

nor t

1

can perform any transi-
tion, it is safe to have this pair inR.

Hence we have shown that each pair from R satisfies the condition given in Defi-
nition 5.4, which means that R is a weak bisimulation.

We can readily argue that a.0 ⇡ a.⌧.0 by establishing a weak bisimulation that
relates these two processes. On the other hand, there is no weak bisimulation that
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relates the process SmUni and the process Start in Table 7. In fact, the process
SmUni is observationally equivalent to the process

Spec def= pub.Spec ,

but the process Start is not.

Exercise 5.14 Prove the claims that we have just made.

Exercise 5.15 Prove that the behavioural equivalences claimed in Exercise 4.7
hold with respect to observational equivalence.

The definition of weak bisimulation and observational equivalence is so natural,
at least to our mind, that it is easy to miss some of its crucial consequences. To
highlight some of these, consider the process

A? def
= a.0 + ⌧.B?

B? def
= b.0 + ⌧.A? .

Intuitively, this process describes a “polling loop” that may be seen as an imple-
mentation of a process that is willing to receive on port a and port b, and then
terminate. Indeed, it is not hard to show that

A? ⇡ B? ⇡ a.0 + b.0 .

(Prove this!) This seems to be non-controversial until we note that A? and B?
have a livelock (that is, a possibility of divergence), but a.0 + b.0 does not. The
above equivalences capture one of the main features of observational equivalence,
namely the fact that it supports what is called “fair abstraction from divergence”.
(See [2], where Baeten, Bergstra and Klop show that a proof rule embodying this
idea, namely Koomen’s fair abstraction rule, is valid with respect to observational
equivalence.) This means that observational equivalence assumes that if a process
can escape from a loop consisting of internal transitions, then it will eventually
do so. This property of observational equivalence, that is by no means obvious
from its definition, is crucial in using it as a correctness criterion in the verification
of communication protocols, where the communication media may lose messages,
and messages may have to be retransmitted some arbitrary number of times in order
to ensure their delivery.

Note moreover that 0 is observationally equivalent to the process

Div def= ⌧.Div .
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Send def
= acc.Sending Rec def

= trans.Del
Sending def

= send.Wait Del def
= del.Ack

Wait def
= ack.Send+ error.Sending Ack def

= ack.Rec

Med def
= send.Med0

Med0 def
= ⌧.Err+ trans.Med

Err def
= error.Med

Table 8: The sender, receiver and medium in (17)

This means that a process that can only diverge is observationally equivalent to
deadlock. This may seem odd at first sight. However, you will probably agree that,
assuming that we can only observe a process by communicating with it, these two
systems are observationally equivalent since both refuse each attempt at commu-
nicating with them. (They do so for different reasons, but these reasons cannot be
distinguished by an external observer.)

As an example of an application of observational equivalence to the verification
of a simple protocol, consider the process Protocol defined by

(Send |Med | Rec) \ L (L = {send, error, trans, ack}) (17)

consisting of a sender and a receiver that communicate via a potentially faulty
medium. The sender, the receiver and the medium are given in Table 8. No that
the potentially faulty behaviour of the medium Med is described abstractly in the
defining equation for process Med0 by means of an internal transition to an “error
state”. When it has entered that state, the medium informs the sender process that



by building a suitable weak bisimulation.

Exercise 5.16 Build the aforementioned weak bisimulation.

Theorem 5.2 For all LTSs, the relation ⇡ is
1. an equivalence relation,

2. the largest weak bisimulation and

3. satisfies the following property:
s

1

⇡ s

2

iff for each action ↵,

- if s
1

↵! s

0
1

, then there is a transition s

2

↵̂) s

0
2

such that s0
1

⇡ s

0
2

;

- if s
2

↵! s

0
2

, then there is a transition s

1

↵̂) s

0
1

such that s0
1

⇡ s

0
2

.

Proof: The proof follows the lines of that of Theorem 5.1, and is therefore omitted.
2

Exercise 5.17 Fill in the details of the proof of the above theorem.

Exercise 5.18 Show that strong bisimilarity is included in observational equiva-
lence.

Exercise 5.19 Show that, for all P,Q, the following equivalences, that are usually
referred to as Milner’s ⌧ -laws, hold:

↵.⌧.P ⇡ ↵.P (18)
P + ⌧.P ⇡ ⌧.P (19)

↵.(P + ⌧.Q) ⇡ ↵.(P + ⌧.Q) + ↵.Q . (20)

Exercise 5.20 Show that, for all P,Q, if P ✏) Q and Q

✏) P , then P ⇡ Q.

Exercise 5.21 We say that a CCS process is ⌧ -free iff none of the states that it can
reach by performing sequences of transitions affords a ⌧ -labelled transition. For
example, a.0 is ⌧ -free, but a.(b.0 | ¯b.0) is not.

Prove that no ⌧ -free CCS process is observationally equivalent to a.0 + ⌧.0.

Exercise 5.22 Prove that, for each CCS process P , the process P \ (Act � {⌧})

is observationally equivalent to 0. Does this remain true if we consider processes
modulo strong bisimilarity?
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The notion of observational equivalence that we have just defined seems to meet
many of our desiderata. There is, however, one important property that observa-
tional equivalence does not enjoy. In fact, unlike strong bisimilarity, observational
equivalence is not a congruence. This means that, in general, we cannot substitute
observationally equivalent processes one for the other in a process context without
affecting the overall behaviour of the system.

To see this, observe that 0 is observationally equivalent to ⌧.0. However, it is
not hard to see that

a.0 + 0 ⇡ a.0 6⇡ a.0 + ⌧.0 .

In fact, the transition a.0 + ⌧.0 ⌧! 0 can only be matched by a.0 + 0 ✏) a.0 + 0,
and the processes 0 and a.0 + 0 are not observationally equivalent. Fortunately,
however, we have that:

Proposition 5.3 Let P,Q,R be CCS processes. Assume that P ⇡ Q. Then

• ↵.P ⇡ ↵.Q, for each action ↵;

• P | R ⇡ Q | R and R | P ⇠ R | Q, for each process R;

• P [f ] ⇡ Q[f ], for each relabelling f ; and

• P \ L ⇡ Q \ L, for each set of labels L.

Proof: The proof follows the lines of that of Theorem 5.1, and is left as an exercise
for the reader. 2

Exercise 5.23 Prove Proposition 5.3.

In light of Proposition 5.3, observational equivalence is very close to being a con-
gruence over CCS. The characterization and the study of the largest congruence
relation included in observational equivalence is a very interesting chapter in pro-
cess theory. It is, however, one that we won’t touch upon in these notes. The
interested reader is referred to [15, Chapter 7] for an in depth treatment of this
beautiful topic.

5.4 Game Characterizations of Strong and Weak Bisimilarity

We can naturally ask ourselves the following question:

What techniques do we have to show that two states are not bisimilar?
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In order to prove that for two given states s and t it is the case that s 6⇠ t, we should
by Definition 5.2 enumerate all binary relations over the set of states and for each of
them show that if it contains the pair (s, t) then it is not a strong bisimulation. For
the transition system from Example 5.1 this translates to investigating 2

25 different
candidates and in general for a transition system with n states one would have
to go through 2

n

2 different binary relations. In what follows, we will introduce
a game characterization of strong bisimilarity, which will enable us to determine
much more effectively that two states are not strongly bisimilar.

The idea is that there are two players in the bisimulation game, called ‘attacker’
and ‘defender’. The attacker is trying to show that two given states are not bisimilar
while the defender aims to show the opposite. The formal definition follows.

Definition 5.5 [Strong Bisimulation Game] Let (Proc,Act, { a!| a 2 Act}) be
a labelled transition system. A strong bisimulation game starting from the pair
of states (s

1

, t

1

) 2 Proc ⇥ Proc is a two-player game of an ‘attacker’ and a
‘defender’.

The game is played in rounds and configurations of the game are pairs of states
from Proc ⇥ Proc. In every round exactly one configuration is called current ;
initially the configuration (s

1

, t

1

) is the current one.
In each round the players change the current configuration (s, t) according to

the following rules.

1. The attacker chooses either a left or right side of the current configuration
(s, t) and an action a from Act.

• If the attacker chose left then he has to perform a transition s

a! s

0 for
some state s

0 2 Proc.
• If the attacker chose right then he has to perform a transition t

a! t

0 for
some state t

0 2 Proc.
2. In this step the defender must provide an answer to the attack made in the
previous step.

• If the attacker chose left then the defender plays on the right side and
has to respond by making a transitions t

a! t

0 for some t

0 2 Proc.
• If the attacker chose right then the defender plays on the left side and
has to respond by making a transitions s

a! s

0 for some s

0 2 Proc.
3. The configuration (s

0
, t

0
) becomes the current configuration and the game

continues by another round according to the rules described above.

58



A play of the game is a maximal sequence of configurations formed by the players
according to the rules described above, and starting from the initial configuration
(s

1

, t

1

). Note that a bisimulation game can have many different plays according to
the choices made by the attacker and the defender. The attacker can choose a side,
an action and a transition. The defender’s only choice is in selecting one of the
available transitions that are labelled with the same action picked by the attacker.

We shall now define when a play is winning for the attacker and when for the
defender.

A finite play is lost by the player who is stuck and cannot make a move from the
current configuration (s, t) according to the rules of the game. Note that attacker
loses only if both s 9 and t 9, i.e., there is no transition from both the left and
the right side of the configuration. The defender loses if he has (on his side of the
configuration) no available transition under the action selected by the attacker.

It can also be the case that none of the players is stuck in any configuration and
the play is infinite. In this situation the defender is the winner of the play.

A given play is always winning either for the attacker or the defender and it
cannot be winning for both at the same time.

The following proposition relates strong bisimilarity with the corresponding
game characterization (see e.g. [22, 24]).

Proposition 5.4 States s

1

and t

1

of a labelled transition system are strongly bisim-
ilar if and only if the defender has a universal winning strategy in the strong bisim-
ulation game starting from the configuration (s

1

, t

1

). The states s

1

and t

1

are not
strongly bisimilar if and only if the attacker has a universal winning strategy.

By universal winning strategy we mean that the player can always win the
game, irrelevant of how the other player is selecting his moves. In case that the
opponent has more than one choice how to continue from the current configuration,
all these possibilities have to be considered.

Example 5.5 Let us recall the transition system from Example 5.1.

s

a

⇤⇤⌃⌃
⌃⌃

⌃⌃
⌃⌃

⌃⌃
⌃⌃

a

��8
88

88
88

88
88

8 t

a

✏✏
s

1

b //
s

2

b

kk
t

1

b

ll

We will show that the defender has a universal winning strategy from the configu-
ration (s, t) and hence show that s ⇠ t. In order to do that, we have to consider all
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possible attacker’s moves from this configuration and define defender’s response
to each of them. The attacker can make three different moves from (s, t):

1. attacker selects right side, action a and makes the move t

a! t

1

2. attacker selects left side, action a and makes the move s

a! s

2

3. attacker selects left side, action a and makes the move s

a! s

1

• Defender’s answer on attack 1. is by playing s

a! s

2

.
(Even though there are more possibilities it is sufficient to provide only one.)
The current configuration becomes (s

2

, t

1

).

• Defender’s answer on attack 2. is by playing t

a! t

1

.
The current configuration becomes again (s

2

, t

1

).

• Defender’s answer on attack 3. is by playing t

a! t

1

.
The current configuration becomes again (s

1

, t

1

).

Now it remains to show that the defender has a universal winning strategy from the
configurations (s

2

, t

1

) and (s

1

, t

1

).
From (s

2

, t

1

) is easy to see that any continuation of the game will always go
through the same current configuration (s

2

, t

1

) and hence the game will be neces-
sarily infinite. According to the definition, the defender is the winner in this case.

From (s

1

, t

1

) the attacker has two possible moves. Either s
1

b! s

2

or t
1

b! t

1

.
In the first case the defender answers by t

1

b! t

1

and in the second case by s

1

b!
s

2

. The next configuration is in both cases (s

2

, t

1

) and we already know that the
defender has a winning strategy from this configuration.

Hence we showed that the defender has a universal winning strategy from the
configuration (s, t) and according to Proposition 5.4 this means that s ⇠ t.

The game characterization of bisimilarity introduced above is simple, yet pow-
erful. It provides an intuitive understanding of this notion. It can be used both
to show that two states are strongly bisimilar as well as that they are not. The
technique is particularly useful for showing non-bisimilarity of two states. This is
demonstrated by the following examples.

Example 5.6 Let us consider the following transition system (we provide only its
graphical representation).
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We will show that s 6⇠ t by describing a universal winning strategy for the attacker
in the bisimulation game starting from (s, t). We will in fact show two different
strategies (but of course finding one is sufficient for proving non-bisimilarity).

• In the first strategy, the attacker selects left side, action a and the transition
s

a! s

1

. Defender can answer by t

a! t

1

or t

a! t

2

. This means that we
will have to consider two different configurations in the next round, namely
(s

1

, t

1

) and (s

1

, t

2

). From (s

1

, t

1

) the attacker wins by playing s

1

c! s

3

on
the left side and the defender cannot answer as there is no c-transition from
t

1

. From (s

1

, t

2

) the attacker wins by playing s

1

b! s

2

and the defender
has again no answer from t

2

. As we analyzed all different possibilities for
the defender and in every one the attacker wins, we have found a universal
winning strategy for the attacker and hence s and t are not bisimilar.

• Now we provide another strategy, which is easier to describe and involves
switching of sides. Starting from (s, t) the attacker plays on the right side
according to the transition t

a! t

1

and the defender can only answer by
s

a! s

1

on the left side (no more configurations need to be examined as this
is the only defender’s possibility). The current configuration hence becomes
(s

1

, t

1

). In the next round the attacker plays s

1

c! s

3

and wins the game as
t

1

c9.

Example 5.7 Let us consider a more complex transition system.
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We will define attacker’s universal winning strategy from (s, t) and hence show
that s 6⇠ t.

In the first round the attacker plays on left side the move s

a! s

1

and the
defender can only answer by t

a! t

1

. The current configuration becomes (s

1

, t

1

).
In the second round the attacker plays on right side according to the transition
t

1

b! t

1

and the defender can only answer by s

1

b! s

3

. The current configuration
becomes (s

3

, t

1

). Now the attacker wins by playing again the transition t

1

b! t

1

(or t
1

b! t

2

) and the defender loses because s

3

9.

5.4.1 Weak Bisimulation Games

We shall now introduce a notion of weak bisimulation game that can be used to
characterize weak bisimilarity, as introduced in Definition 5.4. Recall that the main
idea is that weak bisimilarity abstracts away from internal behaviour of the systems,
which is modelled by the special action ⌧ .

As was the case for strong bisimilarity, showing that two states are not weakly
bisimilar is more difficult and means that we have to enumerate all binary relations
on states and verify that none of them is a weak bisimulation and at the same time
contains the pair of states that we test for equivalence.

Fortunately, the rules of the strong bisimulation game as defined in the previous
section need only be slightly modified in order to achieve a characterization of
weak bisimilarity in terms of weak bisimulation games.

Definition 5.6 [Weak Bisimulation Game] A weak bisimulation game is defined
in the same way as strong bisimulation game in Definition 5.5, with the only ex-
ception that the defender can answer using weak transition relation ↵̂) instead of
only a! as in the strong case. The attacker is still allowed to use only the a!moves.

All the definitions of a play and winning strategy are exactly as before and we
have a similar proposition as for the strong bisimulation game.

Proposition 5.5 States s

1

and t

1

of a labelled transition system are weakly bisim-
ilar if and only if the defender has a universal winning strategy in the weak bisim-
ulation game starting from the configuration (s

1

, t

1

). The states s

1

and t

1

are not
weakly bisimilar if and only if the attacker has a universal winning strategy.

We remind the reader of the fact that in the weak bisimulation game from the
current configuration (s, t), if the attacker chooses a move under the silent action
⌧ (let us say s

⌧! s

0) then the defender can (as one possibility) simply answer by
doing ‘nothing’, i.e., by idling in the state t (as we always have t

") t).
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Example 5.8 Consider the following transition system.
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We will show that s 6⇡ t be defining a universal winning strategy for the attacker
in the weak bisimulation game from (s, t).

In the first round, the attacker selects the left side and action a and plays the
move s

a! s

1

. The defender has three possible moves to answer: (i) t

a) t

2

via
t

1

, (ii) t

a) t

2

via t

1

and t

3

, and (iii) t

a) t

3

via t

1

. In case (i) and (ii) the current
configuration becomes (s

1

, t

2

) and in case (iii) it becomes (s

1

, t

3

).
From the configuration (s

1

, t

2

) the attacker wins by playing s

1

b! s

3

and the
defender loses because t

2

b;.
From the configuration (s

1

, t

3

) the attacker plays from the right side the ⌧



done at all! (See the paper [4] for an investigation of this issue.) In fact, checking
whether a process affords this property seems best done by first constructing the
collection of initial a-labelled transitions that are possible for the process under
consideration, and then checking whether this collection is empty.

We can imagine a whole array of similar properties of the behaviour of a pro-
cess we may be interested in specifying and checking. For instance, we may wish
to know whether our computer scientist

• is not willing to drink tea now,

• is willing to drink both coffee and tea now,

• is willing to drink coffee, but not tea, now,

• never drinks alcoholic beverages, or

• always produces a publication after drinking coffee.

No doubt, you will be able to come up with many others examples of similar prop-
erties of the computer scientist that we may wish to verify.

All of the aforementioned properties, and many others, seem best checked by
exploring the state space of the process under consideration, rather than by trans-
forming them into equivalence checking questions. However, before even thinking
of checking whether these properties hold of a process, either manually or automat-
ically, we need to have a language for expressing them. This language must have
a formal syntax and semantics, so that it can be understood by a computer, and al-
gorithms to check whether a process affords a property may be devised. Moreover,
the use of a language with a well defined and intuitively understandable seman-
tics will also allow us to overcome the imprecision that often accompanies natural
language descriptions. For instance, what do we really mean when we say that

our computer scientist is willing to drink both coffee and tea now?

Do we mean that, in its current state, the computer scientist can perform either a
coffee-labelled transition or a tea-labelled one? Or do we mean that these transi-
tions should be possible one after the other? And, may these transitions be pre-
ceded and/or followed by sequences of internal steps? Whether our computer sci-
entist affords the specified property clearly depends on the answer to the questions
above, and the use of a language with a formal semantics will help us understand
precisely what is meant. Moreover, giving a formal syntax to our specification
language will tell us what properties we can hope to express using it.

The approach to specification and verification of reactive systems that we shall
begin exploring in this section is often referred to as “model checking”. In this
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approach we usually use different languages for describing actual systems and their
specifications. For instance, we may use CCS expressions or the LTSs that they
denote to describe actual systems, and some kind of logic to describe specifications.
In this section, we shall present a property language that has been introduced in
process theory by Hennessy and Milner in [9]. This logic is often referred to as
Hennessy-Milner logic (or HML for short), and, as we shall see in due course, has
a very pleasing connection with the notion of bisimilarity.

Definition 6.1 The set of Hennessy-Milner formulae over a set of actions Act
(from now on referred to asM) is given by the following abstract syntax:

F ::= tt | ff | F ^G | F _G | haiF | [a]F

where a 2 Act. IfA = {a

1

, . . . , a

n

} ✓ Act (n � 0), we use the abbreviation hAiF
for the formula ha

1

iF _ . . ._ha
n

iF and [A]F for the formula [a

1

]F ^ . . .^ [a

n

]F .
(If A = ;, then hAiF = ff and [A]F = tt.)

We are interested in using the above logic to describe properties of CCS processes,
or, more generally, of states in an LTS over the set of actions Act. The meaning of
a formula in the languageM is given by characterizing the collection of processes
that satisfy it. Intuitively, this can be described as follows:

• All processes satisfy tt.

• No process satisfies ff .

• A process satisfies F ^G (respectively, F _G) iff it satisfies both F and G

(respectively, either F or G).

• A process satisfies haiF for some a 2 Act iff it affords an a-labelled transi-
tion leading to a state satisfying F .

• A process satisfies [a]F for some a 2 Act iff all of its a-labelled transitions
lead to a state satisfying F .

So, intuitively, a formula of the form haiF states that it is possible to perform
action a and thereby satisfy property F . Whereas a formula of the form [a]F states
that no matter how a process performs action a, the state it reaches in doing so will
necessarily have property F .

Logics that involve the use of expressions like possibly and necessarily are
usually called modal logics, and, in some form or another, have been studied by
philosophers throughout history, notably by Aristotle and in the middle ages. So
Hennessy-Milner logic is a modal logic—in fact, a so-called multi-modal logic,
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since the logic involves modal operators that are parameterized by actions. The
semantics of formulae is given with respect to a given labelled transition system

(Proc,Act, { a!| a 2 Act}) .

We shall use [[F ]] to denote the set of processes in Proc that satisfy F . This we
now proceed to define formally.

Definition 6.2 We define [[F ]] ✓ Proc for F 2M by:

1. [[tt]] = Proc, 4. [[F _G]] = [[F ]] [ [[G]],

2. [[ff ]] = ; 5. [[haiF ]] = h·a·i[[F ]],

3. [[F ^G]] = [[F ]] \ [[G]], 6. [[[a]F ]] = [·a·][[F ]],

where we use the set operators h·a·i, [·a·] : P(Proc)! P(Proc) defined by

h·a·iS = {p 2 Proc | 9p0
. p

a! p

0 and p

0 2 S} and
[·a·]S = {p 2 Proc | 8p0

. p

a! p

0
=) p

0 2 S}.

We write p |= F iff p 2 [[F ]].
Two formulae are equivalent if, and only if, they are satisfied by the same

processes in every transition system.

Let us now re-examine the properties of our computer scientist that we mentioned
earlier, and let us see whether we can express them using HML. First of all, note
that, for the time being, we have defined the semantics of formulae in M in terms
of the one step transitions a!. This means, in particular, that we are not considering
⌧ actions as unobservable. So, if we say that “a process P can do action a now”,
then we really mean that the process can perform a transition of the form P

a! Q

for some Q.
How to express, for instance, that our computer scientist is willing to drink

coffee now? Well, one way to say so using our logic is to say that the computer
scientist has the possibility of doing a coffee-labelled transition. This suggests that
we use a formula of the form hcoffeeiF for some formula F that should be satisfied
by the state reached by the computer scientist after having drunk her coffee. What
should this F be? Since we are not requiring anything of the subsequent behaviour
of the computer scientist, it makes sense to set F = tt. So, it looks as if we can
express our natural language requirement in terms of the formula hcoffeeitt. In fact,
since our property language has a formal semantics, we can actually prove that our
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proposed formula is satisfied exactly by all the processes that have an outgoing
coffee-labelled transition. This can be done as follows:

[[hcoffeeitt]] = h·coffee·i[[tt]]
= h·coffee·iProc
= {P | P

coffee! P

0 for some P

0 2 Proc} .

So the formula we came up with does in fact say what we wanted.
Can we express using HML that the computer scientist cannot drink tea now?

Consider the formula [tea]ff . Intuitively this formula says that all the states that a
process can reach by doing a tea-labelled transition must satisfy the formula ff , i.e.,
false. Since no state has the property “false”, the only way that a process can satisfy
the property [tea]ff is that it has no tea-labelled transition. To prove formally that
our proposed formula is satisfied exactly by all the processes that have no outgoing
tea-labelled transition, we proceed as follows:

[[[tea]ff ]] = [·tea·][[ff ]]

= [·tea·];
= {P | 8P 0

. P

tea! P

0
=) P

0 2 ;}
= {P | P

tea9} .

The last equality above follows from the fact that, for each process P ,

P

tea9 iff (8P 0
. P

tea! P

0
=) P

0 2 ;) .

To see that this holds, observe first of all that if P

tea! Q for some Q, then it is not
true that P

0 2 ; for all P

0 such that P

tea! P

0. In fact, Q is a counter-example
to the latter statement. So the implication from right to left is true. To establish
the implication from left to right, assume that P tea9. Then it is vacuously true that
P

0 2 ; for all P 0 such that P tea! P

0—indeed, since there is no such P

0, there is no
counter-example to that statement!

To sum up, we can express that a process cannot perform action a 2 Act with
the formula [a]ff .

Suppose now that we want to say that the computer scientist must have a biscuit
after drinking coffee. This means that it is possible for the computer scientist to
have a biscuit in all the states that she can reach by drinking coffee. This can be
expressed by means of the formula

[coffee]hbiscuititt .
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Exercise 6.1

1. Use the semantics of the logic to check that the above formula expresses the
desired property of the computer scientist.

2. Give formulae that express the following natural language requirements:

• the process is willing to drink both coffee and tea now;
• the process is willing to drink coffee, but not tea now;
• the process can always drink tea after having drunk two coffees in a
row.

3. What do the formulae haiff and [a]tt express?

Exercise 6.2 Consider an everlasting clock whose behaviour is defined thus:

Clock def
= tick.Clock .

Prove that the process Clock satisfies the formula

[tick](htickitt ^ [tock]ff) .

Show also that, for each n � 0, the process Clock satisfies the formula

hticki · · · hticki| {z }
n-times

tt .

Exercise 6.3 (Mandatory) Find a formula in M that is satisfied by a.b.0+a.c.0,
but not by a.(b.0 + c.0).

Find a formula in M that is satisfied by a.(b.c.0 + b.d.0), but not by a.b.c.0 +

a.b.d.0.

It is sometimes useful to have an alternative characterization of the satisfaction
relation |= presented in Definition 6.2. This can be obtained by defining the binary
relation |= relating processes to formulae by structural induction on formulae thus:

• P |= tt, for each P ,

• P |= ff , for no P ,

• P |= F ^G iff P |= F and P |= G,

• P |= F _G iff P |= F or P |= G,
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• P |= haiF iff P a! P

0 for some P

0 such that P 0 |= F , and

• P |= [a]F iff P 0 |= F , for each P

0 such that P a! P

0.

Exercise 6.4 Show that the above definition of the satisfaction relation is equiv-
alent to that given in Definition 6.2. [Hint: Use induction on the structure of
formulae.]

Note that logical negation is not one of the constructs in the abstract syntax for
M. However, the languageM is closed under negation, in the sense that, for each
formula F 2 M, there is a formula F

c 2 M that is equivalent to the negation of
F . This formula F

c is defined by structural recursion on F as follows:

1. tt

c

= ff, 4. (F _G)

c

= F

c ^G

c

,

2. ff

c

= tt 5. (haiF )

c

= [a]F

c

,

3. (F ^G)

c

= F

c _G

c

, 6. ([a]F )

c

= haiF c

.

Note, for instance, that

(haitt)c

= [a]ff and
([a]ff)

c

= haitt.

Proposition 6.1 Let (Proc,Act, { a! | a 2 Act}) be a labelled transition system.
Then, for every formula F 2M, it holds that [[F c

]] = Proc \ [[F ]].

Proof: The proposition can be proven by structural induction on F . The details
are left as an exercise to the reader. 2

Exercise 6.5

1. Prove Proposition 6.1.

2. Prove, furthermore, that (F c

)

c

= F for every formula F 2M. [Hint: Use
structural induction on F .]

As a consequence of Proposition 6.1, we have that, for each process P and formula
F , exactly one of P |= F and P |= F

c holds. In fact, each process is either
contained in [[F ]] or in [[F

c

]]
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In Exercise 6.3 you were asked to come up with formulae that distinguished
processes that we know are not strongly bisimilar. As a further example, consider
the processes

A def
= a.A+ a.0 and

B def
= a.a.B+ a.0 .

These two processes are not strongly bisimilar. In fact, A affords the transition

A a! A .

This transition can only be matched by either

B a! 0

or
B a! a.B .

However, neither 0 nor a.B is strongly bisimilar to A, because this process can
perform an a-labelled transition and become 0 in doing so. On the other hand,

a.B a! B

is the only transition that is possible from a.B, and B is not strongly bisimilar to 0.
Based on this analysis, it seems that a property distinguishing the processes A

and B is haihai[a]ff—that is, the process can perform a sequence of two a-labelled
transitions, and in so doing reach a state from which no a-labelled transition is
possible. In fact, you should be able to establish that A satisfies this property, but
B does not. (Do so!)

Again, faced with two non-bisimilar processes, we have been able to find a for-
mula in the logicM that distinguishes them, in the sense that one process satisfies
it, but the other does not. Is this true in general? And what can we say about two
processes that satisfy precisely the same formulae in M? Are they guaranteed to
be strongly bisimilar?

We shall now present a seminal theorem, due to Hennessy and Milner, that
answers both of these questions in one fell swoop by establishing a beautiful, and
very fruitful, connection between the apparently unrelated notions of strong bisim-
ilarity and the logic M. The theorem applies to a class of processes that we now
proceed to define.

Definition 6.3 [Image Finite Process] A process P is image finite iff the collection
{P

0 | P

a! P

0} is finite for each action a.
An LTS is image finite if so is each of its states.
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For example, the process !A defined thus:

!A

def
= a.0|!A

is not image finite. In fact, you should be able to prove by induction on n that, for
each n � 0,

!A

a! a.0 | · · · | a.0| {z }
n times

|0|!A .

Another example of a process that is not image finite is

A<!

def
=

X

i�0

a

i

, (21)

where a

0

= 0 and a

i+1

= a.a

i.
On the other hand all of the other processes that we have met so far in this text

are image finite.

Theorem 6.1 [Hennessy and Milner [9]] Let (Proc,Act, { a!| a 2 Act}) be an
image finite LTS. Assume that P,Q are states in Proc. Then P ⇠ Q iff P and Q

satisfy exactly the same formulae inM.

Proof: We prove the two implications separately.

• Assume that P ⇠ Q and P |= F for some formula F 2M. Using structural
induction on F , we prove that Q |= F . By symmetry, this is enough to
establish that P and Q satisfy the same formulae inM.
The proof proceeds by a case analysis on the form of F . We only present
the details for the case F = [a]G for some action a and formula G. Our
inductive hypothesis is that, for all processesR and S, ifR ⇠ S andR |= G,
then S |= G. Using this hypothesis, we shall prove that Q |= [a]G. To this
end, assume thatQ a! Q

0 for someQ

0. We wish to show thatQ0 |= G. Now,
since P ⇠ Q and Q

a! Q

0, there is a process P

0 such that P

a! P

0 and
P

0 ⇠ Q

0. (Why?) By our assumption that P |= [a]G, we have that P 0 |= G.
The inductive hypothesis yields that Q0 |= G. Therefore each Q

0 such that
Q

a! Q

0 satisfies G, and we may conclude that Q |= [a]G, which was to be
shown.

• Assume that P and Q satisfy the same formulae in M. We shall prove that
P and Q are strongly bisimilar. To this end, note that it is sufficient to show
that the relation

R= {(R,S) | R,S 2 Proc satisfy the same formulae inM}
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is a strong bisimulation. To this end, assume that R R S and R

a! R

0. We
shall now argue that there is a process S

0 such that S a! S

0 and R

0 R S

0.
Since R is symmetric, this suffices to establish that R is a strong bisimula-
tion.
Assume, towards a contradiction, that there is no S

0 such that S a! S

0 and
S

0 satisfies the same properties as R

0. Since S is image finite, the set of
processes S can reach by performing an a-labelled transition is finite, say
{S

1

, . . . , S

n

} with n � 0. By our assumption, none of the processes in the
above set satisfies the same formulae as R

0. So, for each i 2 {1, . . . , n},
there is a formula F

i

such that

R

0 |= F

i

and S

i

6|= F

i

.

(Why? Couldn’t it be that R0 6|= F

i

and S

i

|= F

i

, for some i 2 {1, . . . , n}?)
We are now in a position to construct a formula that is satisfied by R, but not
by S—contradicting our assumption thatR and S satisfy the same formulae.
In fact, the formula

hai(F
1

^ F

2

^ · · · ^ F

n

)

is satisfied by R, but not by S. The easy verification is left to the reader.

The proof of the theorem is now complete. 2

Exercise 6.6 Fill in the details that we have omitted in the above proof. What is
the formula that we have constructed to distinguish R and S in the proof of the
implication from right to left if n = 0?

Remark 6.1 In fact, the implication from left to right in the above theorem holds
for arbitrary processes, not just image finite ones.

The above theorem has many applications in the theory of processes, and in ver-
ification technology. For example, a consequence of its statement is that if two
image finite processes are not strongly bisimilar, then there is a formula in M that
tells us one reason why they are not. Moreover, as the proof of the above theorem
suggests, we can always construct this distinguishing formula.

Exercise 6.7 (For the Theoretically Minded) Consider the process A! given by:

A!

def
= a.A!

.

Show that the processes A<! and A!

+ A<!, where A<! was defined in (21),
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1. are not strongly bisimilar, but

2. satisfy the same properties in M.

Conclude that Theorem 6.1 does not hold for processes that are not image finite.
[Hint: To prove that the two processes satisfy the same formulae in M, use struc-
tural induction on formulae. You will find it useful to first establish the following
statement:

A! satisfies a formula F 2 M iff so does a

i, where i is the modal
depth of F .

The modal depth of a formula is the maximum nesting of the modal operators in
it.]

7 Hennessy-Milner Logic with Recursive Definitions
An HML formula can only describe a finite part of the overall behaviour of a pro-
cess. In fact, as each modal operator allows us to explore the effect of taking one
step in the behaviour of a process, using a single HML formula we can only de-
scribe properties of a fixed finite fragment of the computations of a process. How
much of the behaviour of a process we can explore using a single formula is en-
tirely determined by its so-called modal depth—i.e., by the maximum nesting of
modal operators in it. For example, the formula [a]haiff _ hbitt has modal depth
2, and checking whether a process satisfies it or not involves only an analysis of its
sequences of transitions whose length is at most 2. (We will return to this issue in
Sect. 7.7, where a formal definition of the modal depth of a formula will be given.)

However, we often wish to describe properties that describe states of affairs
that may or must occur in arbitrarily long computations of a process. If we want to
express properties as, for example, that a process is always able to perform a given
action, we have to extend the logic. One way of doing this is to allow for infinite
conjunctions and disjunctions in our property language.

Example 7.1 Consider the processes p and q in Figure 2. It is not hard to come up
with an HML formula that p satisfies and q does not. In fact, after performing an
a-action, p will always be able to perform another one, whereas q may fail to do
so. This can be captured formally in HML as follows:

p |= [a]haitt but
q 6|= [a]haitt.
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Figure 2: Two processes.

Since a difference in the behaviour of the two processes can already be found by
examining their behaviour after two transitions, a formula that distinguishes them
is “small”.

Assume, however, that we modify the labelled transition system for q by adding
a sequence of transitions to r thus:

r = r

0

a! r

1

a! r

2

a! r

3

· · · r
n�1

a! r

n

(n � 0).

No matter how we choose a non-negative integer n, there is an HML formula that
distinguishes the processes p and q. In fact, we have that:

p |= [a]

n+1haitt but
q 6|= [a]

n+1haitt.
However, no formula in HML would work for all values of n. (Prove this claim!)
This is unsatisfactory as there appears to be a general reason why the behaviours
of p and q are different. Indeed, the process p in Figure 2 can always (i.e., at any
point in a computation) perform an a-action—that is, haitt is always true. Let us
call this invariance property Inv(haitt). We could describe it in an extension HML
as an infinite conjunction thus:

Inv(haitt) = haitt ^ [a]haitt ^ [a][a]haitt ^ · · · =

1̂

i=0

[a]

ihaitt.

This formula can be read as follows:

In order for a process to be always able to perform an a-action, this
action should be possible now (as expressed by the conjunct haitt),
and, for each positive integer i, it should be possible in each state
that the process can reach by performing a sequence of i actions (as
expressed by the conjunct [a]

ihaitt).
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On the other hand, the process q has the option of terminating at any time by per-
forming the a-labelled transition leading to process r, or equivalently it is possible
from q to satisfy [a]ff . Let us call this property Pos([a]ff). We can express it in
an extension of HML as the following infinite disjunction:

Pos([a]ff) = [a]ff _ hai[a]ff _ haihai[a]ff _ · · · =

1_

i=0

haii[a]ff.

This formula can be read as follows:

In order for a process to have the possibility of refusing an a-action at
some point, this action should either be refused now (as expressed by
the disjunct [a]ff ), or, for some positive integer i, it should be possible
to reach state in which an a can be refused by performing a sequence
of i actions (as expressed by the disjunct haii[a]ff ).

Even if it is theoretically possible to extend HML with infinite conjunctions and
disjunctions, infinite formulas are not particularly easy to handle (for instance they
are infinitely long, and we would have a hard time using them as inputs for an
algorithm). What do we do instead? The answer is in fact simple; let us introduce
recursion into our logic. Assuming for the moment that a is the only action, we
can then express Inv(haitt) by means of the following recursive equation:

X ⌘ haitt ^ [a]X, (22)

where we write F ⌘ G if and only if the formulas F andG are satisfied by exactly
the same processes (i.e., [[F ]] = [[G]].) The above recursive equation captures the in-
tuition that a process that can invariantly perform an a-labelled transition—that is,
that can perform an a-labelled transition in all of its reachable states—can certainly
perform one now, and, moreover, each state that it reaches via one such transition
can invariantly perform an a-labelled transition. However, the mere fact of writing
down an equation like (22) does not mean that this equation makes sense! Indeed,
equations may be seen as implicitly defining the set of their solutions, and we are
all familiar with equations that have no solutions at all. For instance, the equation

x = x + 1 (23)

has no solution over the set of natural numbers, and there is no X ✓ IN such that

X = IN \ X . (24)
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On the other hand, there are countably many X ✓ IN such that

X = {2} [X , (25)

namely all of the sets that contain the number 2. There are also equations that have
a finite number of solutions, but not a unique one. As an example, consider the
equation

X = {10} [ {n� 1 | n 2 X, n 6= 0} . (26)

The only finite set that is the solution for this equation is the set {0, 1, . . . , 10}, and
the only infinite solution is IN itself.

Exercise 7.1 Check the claims that we have just made.

Since an equation like (22) is meant to describe a formula, it is therefore natural to
ask ourselves the following questions:

• Does (22) have a solution? And what precisely do we mean by that?

• If (22) has more than one solution, which one do we choose?

• How can we compute whether a process satisfies the formula described by
(22)?

Precise answers to these questions will be given in the remainder of this section.
However, it is appropriate here to discuss briefly the first two questions above.

Recall that the meaning of a formula (with respect to a labelled transition sys-
tem) is the set of processes that satisfy it. Therefore, it is natural to expect that a set
S of processes that satisfy the formula described by equation (22) should be such
that:

S = h·a·iProc \ [·a·]S.

It is clear that S = ; is a solution to the equation (as no process can satisfy both
haitt and [a]ff ). But p 62 ; so this cannot be the solution we are looking for.
Actually it turns out that it is the maximal solution we need here, namely where
S = {p}. The set S = ; is the minimal solution.

In other cases it is the minimal solution we are interested in. For instance we
can express Pos([a]ff) by the following equation:

Y ⌘ [a]ff _ haiY.

Here the maximal solution is Y = {p, q, r} but, as p cannot terminate at all, this
is not the solution we are interested in. The minimal solution is Y = {q, r} and is
exactly the set of processes that intuitively satisfy Pos([a]ff).
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When we write down a recursively defined property, we can indicate whether
we desire the minimal or the maximal solution by adding this information to the
equality sign. For Inv(haitt) we want the maximal solution, and in this case we
write

X

max

= haitt ^ [a]X.

For Pos([a]ff) we will write

Y

min

= [a]ff _ haiY.

More generally we can express that the formula F holds for each reachable state
(written Inv(F ), and read “invariantly F ”) by means of the equation

X

max

= F ^ [Act]X

and that F possibly holds at some point (written Pos(F )) by

Y

min

= F _ hActiY.

Intuitively, we use maximal solutions for those properties that hold of a process
unless it has a finite computation that disproves the property. For instance, pro-
cess q does not have property Inv(haitt) because it can reach a state in which no
a-labelled transition is possible. Conversely, we use minimal solutions for those
properties that hold of a process if it has a finite computation sequence which “wit-
nesses´´ the property. For instance, a process has property Pos(haitt) if it has
a computation leading to a state that can perform an a-labelled transition. This
computation is a witness for the fact that the process can perform an a-labelled
transition at some point in its behaviour.

We shall appeal to the intuition given above in the following section, where we
present examples of recursively defined properties.

Exercise 7.2 Give a formula, built using HML and the temporal operators Pos

and/or Inv , that expresses a property distinguishing the processes in Exercise 6.7.

7.1 Examples of recursive properties

Adding recursive definitions to Hennessy-Milner logic gives us a very powerful
language for specifying properties of processes. In particular this extension allows
us to express different kinds of “safety” and “liveness” properties. Before develop-
ing the theory of HML with recursion, we give some more examples of its uses.

Consider the formula Safe(F ) that is satisfied by a process p whenever it has
a complete transition sequence

p = p

0

a

1! p

1

a

2! p

2

· · ·
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where each of the processes p

i

satisfies F . (A transition sequence is complete if it
is infinite or its last state affords no transition.) This invariance of F under some
computation can be expressed in the following way:

X

max

= F ^ ([Act]ff _ hActiX).

It turns out to be the maximal solution that is of interest here as we will argue for
formally later.

A process p satisfies the property Even(F ) if each of its complete transition
sequences will contain at least one state that has the property F . This means that
either p satisfies F , or p can perform some transition and every state that it can
reach can eventually reach a state that has property F . This can be expressed by
means of the following equation:

Y

min

= F _ (hActitt ^ [Act]Y ).

In this case we are interested in the minimal solution because Even(F ) should
only be satisfied by those processes that can be reached from p by a finite number
of transitions.

Note that the definitions of Safe(F ) and Even(F ), respectively Inv(F ) and
Pos(F ), are mutually dual, i.e., they can be obtained from one another by replacing
_ by ^, [A] by hAi and min

= by max

= . One can show that ¬Inv(F ) ⌘ Pos(¬F ) and
¬Safe(F ) ⌘ Even(¬F ), where we write ¬ for logical negation.

It is also possible to express that F should be satisfied in each transition se-
quence until G becomes true. There are two variants of this construction, namely

• F Us

G, the so-called strong until, that says that sooner or later p reaches a
state where G is true and in all the states it reaches before this happens F

must hold.

• FUw

G, the so-called weak until, that says that F must hold in all states
p reaches until it gets into state where G holds (but maybe this will never
happen!).

We express these operators as follows:

F Us

G

min

= G _ (F ^ hActitt ^ [Act](FUs

G)),

F Uw

G

max

= G _ (F ^ [Act](FUw

G)).

It should be clear that, as the names indicate, strong until is a stronger condition
than weak until. We can use the “until” operators to express Even(F ) and Inv(F ).
Thus Even(G) ⌘ tt Us

G and Inv(F ) ⌘ F Uw

ff .
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Properties like “some time in the future” and “until” are examples of what
we call temporal properties. Tempora is Latin and means “time” and a logic that
expresses properties that depend on time is called temporal logic. The study of
temporal logics is very old and can be traced back to Aristoteles. Within the last 20
years, researchers in computer science have started showing interest in temporal
logic as within this framework it is possible to express properties of the behaviour
of programs that change over time [5, 21].

The modal µ-calculus [13] is a generalization of Hennessy-Milner logic with
recursion that allows for maximal and minimal definitions to be mixed freely. It
has been shown that the modal µ-calculus is expressive enough to describe any of
the standard operators that occur in the framework of temporal logic. In this sense
by extending Hennessy-Milner logic with recursion we obtain a temporal logic.

From the examples in this section we can see that minimal fixed points are used
to express that something will happen sooner or later, whereas the maximal fixed
points are used to express invariance of some state of affairs during computations,
or that something does not happen as a system evolves.

7.2 Syntax and semantics of Hennessy-Milner logic with recursion

The first step towards introducing recursion in HML is to add variables to the syn-
tax. To start with we only consider one recursively defined property. We will return
to the more general case of properties defined by mutual recursion later.

The syntax for Hennessy-Milner-logic with one variable X , M{X}, is given
by the following syntax:

F ::= X | tt | ff | F

1

^ F

2

| F

1

_ F

2

| haiF | [a]F.

Semantically a formula F (that may contain a variable X) is interpreted as a func-
tion O

F

: P(Proc) ! P(Proc) that, given a set of processes that are assumed to
satisfy X , gives us the set of processes that satisfy F .

Example 7.2 Consider the formula F = haiX and let Proc be the set of states in
the transition graph in Figure 3. If X is satisfied by p

1

, then haiX will be satisfied
by p

3

, i.e., we expect that

OhaiX({p

1

}) = {p

3

}.

If the set of states satisfying X is {p

1

, p

2

} then haiX will be satisfied by {p

1

, p

3

}.
Therefore we expect to have that

OhaiX({p

1

, p

2

}) = {p

1

, p

3

}.
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Figure 3: A process

The above intuition is captured formally in the following definition.

Definition 7.1 Let (Proc,Act, { a! | a 2 Act}) be a labelled transition system.
For each S ✓ Proc and formula F , we define O

F

(S) inductively by:

O
X

(S) = S

O
tt

(S) = Proc
O

ff

(S) = ;
O

F

1

^F

2

(S) = O
F

1

(S) \O
F

2

(S)

O
F

1

_F

2

(S) = O
F

1

(S) [O
F

2

(S)

OhaiF (S) = h·a·iO
F

(S)

O
[a]F

(S) = [·a·]O
F

(S)

Exercise 7.3 Given the transition graph from Example 7.2, use the above defini-
tion to calculate O

[b]ff^[a]X

({p

2

}).

One can show that for every formula F , the function O
F

is monotonic over the
complete lattice (P(Proc),✓). In other words, for all subsets S

1

, S

2

of Proc, if
S

1

✓ S

2

then O
F

(S

1

) ✓ O
F

(S

2

).

Exercise 7.4 Show that O
F

is monotonic for all F . Consider what will happen if
we introduce negation into our logic.

As mentioned before, the idea underlying the definition of the function O
F

is that
if [[X]] ✓ Proc gives the set of processes that satisfy X , then O

F

([[X]]) will be the
set of processes that satisfy F . What is this set [[X]] then? Syntactically we shall
assume that [[X]] is implicitly given by a recursive equation for X of the form

X

min

= F

X

or X

max

= F

X

.
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As shown in the previous section, such an equation can be interpreted as the set
equation

[[X]] = O
FX ([[X]]). (27)

As O
FX is a monotonic function over a complete lattice we know that (27) has so-

lutions, i.e., that O
FX has fixed points. In particular Tarski’s Fixed Point Theorem

gives us that there is a unique maximal fixed point, denoted by FIX O
FX , and also

a unique minimal one, denoted by fix O
FX , given respectively by

FIX O
FX =

[
{S ✓ Proc | S ✓ O

FX (S)} and

fix O
FX =

\
{S ✓ Proc | O

FX (S) ✓ S}.

A set S with the property that S ✓ O
FX (S) is called a post fixed point for O

FX .
Correspondingly S is pre fixed point for O

FX if O
FX (S) ✓ S.

In what follows, for a function f : P(Proc) �! P(Proc) we define

f

0

= idP(Proc)

the identity function on P(Proc) and
f

m+1

= f � f

m

.

When Proc is finite we have the following characterization of the maximal and
minimal fixed points.

Theorem 7.1 If Proc is finite then FIX O
FX = (O

FX )

M

(Proc) for someM and
fix O

FX = (O
FX )

m

(;) for somem.

Proof: Follows directly from the fixed point theorem for finite complete lattices.
See Appendix A for the details. 2

7.3 Maximal fixed points and invariant properties

In this section we shall have a closer look at the meaning of formulae defined by
means of maximal fixed point. More precisely we consider an equation of the form

X

max

= F

X

and define [[X]] ✓ Proc by

[[X]] = FIX O
FX .
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We have previously given an informal argument for why invariant properties are
obtained as maximal fixed points. In what follows we will formalize this argument,
and prove its correctness.

As we saw in the previous section, the property Inv(F ) is obtained as the
maximal fixed point to the recursive equation

X = F ^ [Act]X.

We will now show that Inv(F ) defined in this way indeed expresses that F holds
under all transitions sequences.

For this purpose we let I : 2

Proc �! 2

Proc be the corresponding semantic
function, i.e.,

I(S) = [[F ]] \ [·Act·]S.

By Tarski´s Fixed Point Theorem this equation has exactly one maximal solution
given by

FIX I =

[
{S | S ✓ I(S)}

To show that FIX I indeed characterizes precisely the set of processes for which
all derivation satisfy the property F , we need a direct (and obviously correct) for-
mulation of this set. This is given by the set Inv defined as follows:

Inv = {p | 8s 2 Act⇤, p0 2 Proc . p

s! p

0 ) p

0 2 [[F ]]}.

The correctness of Inv(F ) with respect to this description can now be formulated
as follows:

Theorem 7.2 For every labelled transition system (Proc,Act, { a! | a 2 Act}), it
holds that Inv = FIX I.

Proof: We prove the statement by proving each of the inclusions Inv ✓ FIX I
and FIX I ✓ Inv separately.

Inv ✓ FIX I: To prove this inclusion it is sufficient to show that Inv ✓ I(Inv)

(Why?). To this end, let p 2 Inv . Then, for all s, p0,

p

s! p

0 implies that p0 2 [[F ]]. (28)

We must establish that p 2 I(Inv), or equivalently that p 2 [[F ]] and that
p 2 [·Act·]Inv . We obtain the first one of these two statements by letting
s = " in (28) because p

"! p always holds.
To prove that p 2 [·Act·]Inv , we have to show that, for each process p

0 and
action a,
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p

a! p

0 implies p

0 2 Inv ,

which is equivalent to proving that, for each sequence of actions s

0 and pro-
cess p

00,

p

a! p

0 and p

0 s

0! p

00 imply p

00 2 [[F ]].

However, this follows immediately by letting s = as

0 in (28).

FIX I ✓ Inv : First we note that, since FIX I is a fixed point of I, it holds that:

FIX I = [[F ]] \ [·Act·]FIX I. (29)

To prove that FIX I ✓ Inv , assume that p 2 FIX I and that p s! p

0. We
shall show that p0 2 [[F ]] by induction on |s|, the length of s.
Base case s = ": Then p = p

0 and therefore, by (29), it holds that p0 2 [[F ]],
which was to be shown.

Inductive step s = as

0: Then p

a! p

00 s

0! p

0 for some p

00. By (29), it follows
that p

00 2 FIX I. As |s0| < |s| and p

00 2 FIX I, by the induction
hypothesis we may conclude that p0 2 [[F ]], which was to be shown.

This completes the proof of the second inclusion.

2

7.4 Game Characterization of Hennessy-Milner Logic with One Re-
cursively Defined Variable

To be connected with the rest of the text.
Let us recall the definition of Hennessy-Milner logic with one recursively de-

fined variable X . The formulae are defined using the following abstract syntax

F ::= X | tt | ff | F

1

^ F

2

| F

1

_ F

2

| haiF | [a]F

where a 2 Act and there is exactly one defining equation of the variable X which
is of the form

X

min

= F

X

or
X

max

= F

X

where F

X

is a formula of the logic which can contain one or more occurrences of
the variable X .
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Let (Proc,Act, { a!| a 2 Act}) be a labelled transition system and F a formula
of Hennessy-Milner logic with one (recursively defined) variableX . Let s 2 Proc.
We shall describe a game between an ‘attacker’ and a ‘defender’ which has the
following goal:

• the attacker is aiming to prove that s 6|= F , while

• the defender is aiming to prove that s |= F .

The configurations of the game are pairs of the form (s, F ) where s 2 Proc and F

is a formula of Hennessy-Milner logic with one variable X . For every configura-
tion we define the following successor configurations according to the structure of
the formula F (here s is ranging over Proc):

• (s, tt) and (s, ff) have no successor configurations

• (s, F

1

^F

2

) and (s, F

1

_F

2

) both have two successor configurations, namely
(s, F

1

) and (s, F

2

)

• (s, haiF ) and (s, [a]F ) both have the successor configurations (s

0
, F ) for

every s

0 such that s a! s

0

• (s,X) has only one successor configuration (s, F

X

) where X is defined via
the equation X

max

= F

X

or X min

= F

X

.

A play of the game starting from (s, F ) is a maximal sequence of configura-
tions formed by the players according to the following rule:

• the attacker picks up a successor configuration for every current configura-
tion of the form (s, F

1

^ F

2

) and (s, [a]F ),

• the defender picks up a successor configuration for every current configura-
tion of the form (s, F

1

_ F

2

) and (s, haiF ).

Note that the successor configuration of (s,X) is always uniquely determined
and we will denote this move by (s,X) ! (s, F

X

). Similarly successor configu-
rations selected by the attacker will be denoted as A!moves and by the defender as
D! moves.
Let us also notice that every play either

• terminates in (s, tt) or (s, ff), or

• it can be the case that the attacker (or the defender) gets stuck in the current
configuration (s, [a]F ) (or (s, haiF )) whenever s a9, or
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• the play is infinite.

The following rules decide who is the winner of a play.

• The attacker is a winner in every play ending in a configuration of the form
(s, ff) or in a play in which the defender gets stuck.

• The defender is a winner in every play ending in a configuration of the form
(s, tt) or in a play in which the attacker gets stuck.

• The attacker is a winner in every infinite play provided that X is defined via
X

min

= F

X

; the defender is a winner in every infinite play provided thatX is
defined via X

max

= F

X

.

Theorem 7.3 [Game Characterization]
Let (Proc,Act, { a!| a 2 Act}) be a labelled transition system and F a formula of
Hennessy-Milner logic with one (recursively defined) variable X . Let s 2 Proc.

• It holds that s |= F if and only if the defender has a universal winning
strategy starting from (s, F ).

• It holds that s 6|= F if and only if the attacker has a universal winning strategy
starting from (s, F ).

Remark 7.1 The intuition for the least and largest fixed point is as follows. IfX is
defined as a least fixed point then the defender has to prove in finitely many rounds
that the property is satisfied. If X is defined as a largest fixed point then it is the
attacker who has to disprove in finitely many rounds that the formula is satisfied.

7.4.1 Examples of Use

In this section let us consider the following labelled transition system.

s

b

&&
s

1

b //

b

ee s

2

a //
s

3

a

ww

Example 7.3 We start with an example which is not using any recursively defined
variable. We shall demonstrate that s |= [b](hbi[b]ff ^ hbi[a]ff) by defining a
universal winning strategy for the defender. As remarked before, we will use A!
to denote that the successor configuration was selected by the attacker and D! to
denote that it was selected by the defender. The game starts from (s, [b](hbi[b]ff ^
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hbi[a]ff)). Because [b] is the topmost operation, the attacker selects the successor
configuration and he has only one possibility, namely

(s, [b](hbi[b]ff ^ hbi[a]ff))

A! (s

1

, hbi[b]ff ^ hbi[a]ff).

Now the topmost operation is ^ so the attacker has two possibilities:

(s

1

, hbi[b]ff ^ hbi[a]ff)

A! (s

1

, hbi[b]ff)

or
(s

1

, hbi[b]ff ^ hbi[a]ff)

A! (s

1

, hbi[a]ff).

We have to show that the defender wins from any of these two configurations (we
have to find a universal winning strategy).

• From (s

1

, hbi[b]ff) it is the defender who makes the next move; let him so
play (s

1

, hbi[b]ff)

D! (s

2

, [b]ff). Now the attacker should continue but s
2

b9
so he is stuck and the defender wins this play.

• From (s

1

, hbi[a]ff) it is also the defender who makes the next move; let him
play (s

1

, hbi[a]ff)

D! (s, [a]ff). Now the attacker should continue but s a9
so he is stuck again and the defender wins this play.

Hence the defender has a universal winning strategy.

Example 7.4 Let X

min

= haitt _ hbiX . This property informally says that it is
possible to perform a sequence of b actions leading to a state where the action a is
enabled. We will show that s |= X by defining a universal winning strategy for the
defender starting from (s,X). The strategy looks as follows (note that it consists
solely of the defender’s moves D! or the! moves for expanding the variable X ,
so it is an universal winning strategy):

(s,X)! (s, haitt _ hbiX)

D! (s, hbiX)

D! (s

1

, X)!

! (s

1

, haitt _ hbiX)

D! (s

1

, hbiX)

D! (s

2

, X)!
! (s

2

, haitt _ hbiX)

D! (s

2

, haitt) D! (s

3

, tt)

According to the definition (s

3

, tt) is a winning configuration for the defender.
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Example 7.5 Let X

max

= hbitt ^ [b]X . This property informally says that along
every path where the edges are labelled by the action b, the action b never becomes
disabled. It is easy to see that s 6|= X and we will prove it by finding a universal
winning strategy for the attacker starting from (s,X). As before, the attacker’s
strategy will not give any selection possibility to the defender and hence it is a
universal one.

(s,X)! (s, hbitt ^ [b]X)

A! (s, [b]X)

A! (s

1

, X)!

! (s

1

, hbitt ^ [b]X)

A! (s

1

, [b]X)

A! (s

2

, X)!
! (s

2

, hbitt ^ [b]X)

A! (s

2

, hbitt)
From the last configuration (s

2

, hbitt) the defender is supposed to continue but he
is stuck as s

2

b9 and hence the attacker wins.

Example 7.6 LetX max

= haitt^ [a]X . This is the same property as in the previous
example (with a exchanged for b). We will show that s

2

|= X by finding a universal
winning strategy for the defender from (s

2

, X). In the first round we expand the
variable X by the move (s

2

, X)! (s

2

, haitt ^ [a]X) and in the second round the
attacker can play either

(s

2

, haitt ^ [a]X)

A! (s

2

, haitt)
or

(s

2

, haitt ^ [a]X)

A! (s

2

, [a]X).

It is easy to see that the defender wins from the configuration (s

2

, haitt) by the
move (s

2

, haitt) D! (s

3

, tt), so we shall investigate only the continuation of the
game from (s

2

, [a]X). The attacker has only the move (s

2

, [a]X)

A! (s

3

, X).
After expanding the variableX the game continues from (s

3

, haitt^ [a]X). Again
the attacker can play either

(s

3

, haitt ^ [a]X)

A! (s

3

, haitt)
or

(s

3

, haitt ^ [a]X)

A! (s

3

, [a]X).

In the first case the attacker loses as before. In the second case, the only contin-
uation of the game is (s

3

, [a]X)

A! (s

3

, X). However, we have already seen this
configuration earlier in the game. To sum up, either the attacker loses in finitely
many steps or the game can be infinite. As we consider the largest fixed point, in
both cases the defender is the winner of the game.
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Example 7.7 Let X min

= haitt _ ([b]X ^ hbitt). This property informally says that
along each b labelled sequence there is eventually a state where the action a is
enabled. We shall argue that s

1

6|= X by finding a winning strategy for the attacker
starting from (s

1

, X). The first move of the game is (s

1

, X)! (s

1

, haitt_ ([b]X^
hbitt)) and then the defender has two options, namely

(s

1

, haitt _ ([b]X ^ hbitt)) D! (s

1

, haitt)

or
(s

1

, haitt _ ([b]X ^ hbitt)) D! (s

1

, [b]X ^ hbitt).
In the first case the defender loses as he is supposed to pick up an a-successor of
the state s

1

but s
1

a9. In the second case the attacker proceeds as follows.

(s

1

, [b]X ^ hbitt) A! (s

1

, [b]X)

A! (s,X)

The game now continues from (s,X) by the move (s,X) ! (s, haitt _ ([b]X ^
hbitt)). Again, if the defender plays (s, haitt _ ([b]X ^ hbitt)) D! (s, haitt) then he
loses in the next round, so the defender has to play (s, haitt _ ([b]X ^ hbitt)) D!
(s, [b]X^hbitt). The attacker continues by (s, [b]X^hbitt) A! (s, [b]X)

A! (s

1

, X)

and the situation (s

1

, X) has already been seen before. This means that the game is
infinite (unless the defender loses in finitely many rounds) and hence the attacker
is the winner of the game (we are considering a least fixed point).

7.5 Mutually recursive equational system

As you may have noticed, so far we have only allowed one equation with one
variable in our recursive definitions. A mutually recursive equational system has
the form

X

1

= F

X

1

...
X

n

= F

Xn ,

where X = {X

1

, . . . , X

n

} is a set of variables and, for i  n, the formula F

Xi is
in MX , and can therefore contain any variable from X . An example of such an
equational system is

X = [a]Y

Y = haiX .
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An equational system is sometimes given by specifying a (finite) set of variables
X together with a declaration. A declaration is a function D : X ! MX that
associates a formula with each variable—D(X) = F

X

in the notation used above.
To define the semantics of such an equational system it is not enough to con-

sider simply the complete lattice consisting of subsets of processes. Instead such
a system is interpreted over n-dimensional vectors of sets of processes, , where
n is the number of variables in X . Thus the new domain is D = (P(Proc))n

(n-times cross product of P(Proc) with itself) with a partial order defined “com-
ponent wise”:

(S

1

, . . . , S

n

)  (S

0
1

, . . . , S

0
n

) if S
1

✓ S

0
1

and S

2

✓ S

0
2

and . . . and S

n

✓ S

0
n

.

(D,) defined in this way yields a complete lattice with the least upper bound and
the greatest lower bound also defined component wise:

F{(A

i

1

, . . . , A

i

n

) | i 2 I} = (

S{A

i

1

| i 2 I}, . . . ,

S{A

i

n

| i 2 I}) and

d{(A

i

1

, . . . , A

i

n

) | i 2 I} = (

T{A

i

1

| i 2 I}, . . . ,

T{A

i

n

| i 2 I}).

The semantic function [[D]] : D ! D that is used to obtain the maximal and
minimal solutions of the system of recursive equations described by the declaration
D is obtained from the syntax in the following way:

[[D]]([[X

1

]], . . . , [[X

n

]]) =

(O
FX

1

([[X

1

]], . . . , [[X

n

]]), . . . , O
FXn

([[X

1

]], . . . , [[X

n

]])) , (30)

where each argument [[X
i

]] (1  i  n) can be replaced by an arbitrary S ✓ Proc.
The function [[D]] turns out to be monotonic over the complete lattice (D,),

and we can obtain both the maximal and minimal fixed point for the equational
system in the same way as for the case of one variable.

Exercise 7.5

1. Show that (P(Proc)n

,,

F
,

d
), with , F

and
d
defined as described in

the text above, is a complete lattice.

2. Show that (30) defines a monotonic function

[[D]] : P(Proc)n �! P(Proc)n

.

3. Compute the least and largest solutions of the system of equations

X = [a]Y

Y = haiX
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over the transition system associated with the CCS term

A

0

= a.A

1

+ a.a.0

A

1

= a.A

2

+ a.0

A

2

= a.A

1

.

7.6 A Proof System for Maximal Properties

In this section we will introduce a proof system that allows us to determine whether
a process p satisfies a given property F , defined over variables which are declared
as a maximal solution to a recursive equational system. In particular we will prove
that the proof system is sound and complete in a sense that we will explain more
precisely later. For the sake of simplicity, in our presentation we restrict ourselves
to the setting in which there is only one recursion variable, namelyX , with defining
equation

X

max

= F

X

.

The interested reader is referred to [14] for generalizations of the material we
present in what follows.

The proof system is given in Table 9. It consists of a collection of inference
rules of the form

Premises
Conclusion

As it is customary with inference rules, we can read them top-down or bottom-
up. When read top-down, a rule intuitively states that if we have shown all of
the premises above the solid line, then we can use the rule to infer the conclusion
below the solid line. When read bottom-up, the rule says that in order to prove
the conclusion, it is sufficient to establish the premises—which now become our
sub-goals. A rule without premises is usually called an axiom.

The statements of the proof system are of the form � ` p : F , where � is a set
of hypotheses of the form

{p

1

: X, . . . , p

n

: X} .

We also refer to such statements as sequents. The intuitive interpretation of the
sequent � ` p : F is as follows:

Given that the sequence of hypotheses � = {p

1

: X, . . . , p

n

: X}
holds (i.e., p

i

2 [[X]] for each i), the process p satisfies the property F

(i.e., p 2 [[F ]]).
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TT � ` p : tt

AND � ` p : F

1

� ` p : F

2

� ` p : F

1

^ F

2

OR � ` p : F

1

� ` p : F

1

_ F

2

� ` p : F

2

� ` p : F

1

_ F

2

DIAMOND � ` p

0
: F

� ` p : haiF if p a! p

0

BOX � ` p

1

: F · · · � ` p

n

: F

� ` p : [a]F

if {p

1

,...,pn}={p | p

a! p

0}

MAX1 �, p : X ` p : X

MAX2 �, p : X ` p : F

X

� ` p : X

X

max

= FX

Table 9: Proof system for maximal properties
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; ` p : X

MAX2
p : X ` p : haitt ^ [a]X

AND
p : X ` p : [a]X

BOX
p : X ` p : X

p : X ` p : haitt
DIAMOND

p : X ` p : tt

Figure 4: Proof for p |= Inv(haitt)

For instance, the statement in axiom TT states the intuitively obvious fact that each
process p satisfies the formula tt, no matter what our assumptions are. On the other
hand, axiom MAX1 says that p satisfies X , if we assume so.

We say that a statement � ` p : F is provable if there exists a proof tree with
only axioms occurring in the leaves (application of the rules TT or MAX1) and
whose root is � ` p : F . If � ` p : F is provable, we simply write � ` p : F .

Example 7.8 Let us consider the process p from Example 7.1. We can use the
proof system in Table 9 to show that p |= Inv(haitt). In Figure 4, we have a proof
for this statement from an empty set of hypotheses. The leftmost leaf in that proof
is an instance of the axiom MAX1, and the rightmost one follows by using axiom
TT.

Proof systems like the one Table 9 are meant allow for purely symbolic reasoning
about some reality of interest. Therefore the most desirable property of a proof
system is that it only allows us to prove statements that are true in the universe of
discourse. This property is called soundness. If a proof system is powerful enough
to prove each true statement, then it is called complete.

We would like to prove that the proof system in Table 9 is sound and complete,
i.e., that the following holds:

; ` p : F iff p 2 [[F ]]. (31)

The claim of soundness of the proof system is expressed by the implication in (31)
from left to right, whereas its completeness is stated in the opposite implication.

Lemma 7.1 Let (Proc,Act, { a! |a 2 Act}) be a labelled transition system. Then,
for every process p and formula F , it holds that

p 2 [[F ]] iff there is an S ✓ Proc such that S ✓ O
FX (S) and p 2 O

F

(S). (32)

Exercise 7.6 Prove that Lemma 7.1 holds. (Hint: Use induction on the structure
of the formula F .)
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By Lemma 7.1 the soundness and completeness of the proof system reduces to the
statement

; ` p : F iff there is an S ✓ Proc such that S ✓ O
FX (S) and p 2 O

F

(S).

The result we prove is more general than (31) as it involves non-empty sets of
assumptions.

Theorem 7.4 (Soundness) Assume that X is given by the equation X

max

= F

X

in
a maximal equational system E. Then

p

1

: X, . . . , p

n

: X ` p : F implies S ✓ O
FX (S) [ {p

1

, . . . , p

n

} for
some S such that p 2 O

F

(S).

Proof: We prove the statement by induction on the depth of the derivation tree
needed to prove that p

1

: X, . . . , p

n

: X ` p : F . We proceed by case analysis by
investigating the last rule used in the proof.

Base case: The statement follows by applying axiom TT or Max1.
We examine these two possibilities separately.

TT In this case F = tt and O
F

(S) = Proc for all S. It is therefore easy
to find a subset S of Proc such that S ✓ O

FX (S) [ {p

1

, . . . , p

n

} and
p 2 O

F

(S); we can, for instance, take S = ;.
MAX1 Here we have that p

1

: X, . . . , p

n

: X, p : X ` p : X . It is again
easy to see that there exists an S with the wanted property; choose
S = {p}.

Inductive step: Now we consider the cases where the proof is completed by an
application of an inference rule. Our induction hypothesis is that the state-
ment holds for the statements that appear in the premises of the rules.

MAX2 We have concluded that p
1

: X, . . . , p

n

: X ` p : X from

p

1

: X, . . . , p

n

: X, p : X ` p : F

X

.

By the induction hypothesis it must be the case that S ✓ O
FX (S) [

{p

1

, . . . , p

n

, p} and p 2 O
FX (S), for some S. We want an S

0 such that
S

0 ✓ O
FX (S

0
) [ {p

1

, . . . , p

n

} and p 2 O
X

(S

0
). To obtain this we can

let S0
= S [ {p}.

The proofs for the missing rules are left to the reader as an exercise. 2
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Exercise 7.7 Complete the proof for Theorem 7.4. Why is it sufficient to choose
S

0
= S [ {p} in the case when the rule MAX2 was considered?

Exercise 7.8 Prove that Theorem 7.4 implies (31).

Now we know that our proof system is sound—anything we can prove by using the
proof rules holds in the denotational semantics. Fortunately it is also the case that
the proof system is complete, i.e., each statement that holds in the semantics can
be proven by the system—at least if the transition graph is finite.

Theorem 7.5 (Completeness) Let p be a process in a finite transition graph. If
there is an S ✓ Proc such that S ✓ O

FX (S)[ {p

1

, . . . , p

n

} and p 2 O
F

(S), then
we have that p

1

: X, . . . , p

n

: X ` p : F .

Proof: Assume that (Proc,Act, {a 2 Act | a! }) is a finite transition graph, i.e.,
that Proc = {q

1

, . . . , q

k

} for some k. Assume that there exists an S such that
S ✓ O

FX (S) [ {p

1

, . . . , p

n

} and p 2 O
F

(S). Now we prove that

p

1

: X, . . . , p

n

` p : F

by induction on |Proc \ {p

1

, . . . p

n

}|, i.e., the number of elements in the comple-
ment of {p

1

, . . . , p

n

}.
Base case: Then we have that {p

1

, . . . , p

n

} = Proc. We prove this case by (an
inner) structural induction on F . We only give the details of the proof for
three of the cases; the remaining cases we leave to the reader as an exercise.

F = tt: Follows immediately from the rule TT.
F = F

1

^ F

2

: Now we have that S ✓ O
FX (S) [ {p

1

, . . . , p

n

} and p 2
O

F

1

^F

2

(S). The definition of O
F

1

^F

2

gives that p 2 O
F

1

(S) and p 2
O

F

1

(S). From the hypothesis for the inner induction it now follows
that p

1

: X, . . . p

k

: X ` F

1

and p

1

: X, . . . p

k

: X ` F

2

. The rule
AND gives us immediately that p

1

: X, . . . , p

n

` p : F

1

^ F

2

.
F = X: Here it is clear that p 2 {p

1

, . . . , p

n

}, and the result follows by
MAX1.

Inductive step: Assume that the theorem holds for all P ✓ Proc with |P | <

n� k. Towards proving the statement we also assume that there exists an S

such that S ✓ O
FX (S) [ {p

1

, . . . , p

n

} and p 2 O
F

(S). We will show that
p

1

: X, . . . , p

n

` p : F . Again we proceed by structural induction on F .
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The only interesting case is when F = X . If p 2 {p

1

, . . . , p

n

}, we sim-
ply use MAX1. Therefore we may assume that p 62 {p

1

, . . . , p

n

}. By the
inductive hypothesis we know that that,

9R.(R ✓ O
FX (R) and p 2 O

FX (R) [ {p

1

, . . . , p

n

, p}) implies
p

1

: X, . . . , p

n

: X, p : X ` p : F

X

(33)

By our assumption there is an S such that S ✓ O
FX (S) [ {p

1

, . . . , p

n

} and
p 2 O

X

(S). Obviously

S ✓ O
FX (S) [ {p

1

, . . . , p

n

, p}. (34)

Furthermore, as O
X

(S) = S, we have that

p 2 O
X

(S) = S ✓ O
FX (S) [ {p

1

, . . . , p

n

}.

By assumption p 62 {p

1

, . . . , p

n

} which in turn implies that

p 2 O
FX (S). (35)

Therefore, by the induction hypothesis (33) and by (34) and (35) we have
that

p

1

: X, . . . , p

n

: X, p : X ` p : F

X

.

By using MAX2 we can conclude that

p

1

: X, . . . , p

n

: X ` p : X ,

which was to be shown.

This completes the proof. 2

7.7 Characteristic properties

The characterization theorem for bisimulation equivalence in terms of Hennessy-
Milner logic tells us that if our transition system is image finite, the equivalence
classes of bisimulation equivalence are completely characterized by the logic—
see [9] for the original reference. More precisely for image finite processes, the
equivalence class that contains p consists exactly of the set of processes that satisfy
the same formulas in HML as p—that is, letting [p]⇠ = {q | q ⇠ p},

[p]⇠ = {q | 8F 2M.p |= F =) q |= F}.
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Exercise 7.9 Note that in the above rephrasing of the characterization theorem for
HML, we only require that each formula satisfied by p is also satisfied by q, but not
that the converse also holds. Show, however, that if q satisfies all the formulas in
HML satisfied by p, then p and q satisfy the same formulas in HML.

In this section we will show that if our transition system is finite, by extending
the logic with recursion, we can characterize the equivalence classes for strong
bisimulation with a single formula. The formula that characterizes the bisimulation
equivalence class for p is called the characteristic formula for p. (That such a
formula is unique from a semantic point of view is obvious as the semantics for
such a formula is exactly the equivalence class [p]⇠.)

Our aim in this section is therefore, given a process p in a finite transition
system, to find a formula �

p

2MX for a suitable set of variables X , such that for
all processes q

q |= �

p

iff q ⇠ p.

Let us start by giving an example that shows that in general bisimulation equiva-
lence cannot be characterized by a finite or recursion free formula.

Example 7.9 Assume that Act = {a} and that the process p is given by the equa-
tion

X

def
= a.X.

We will show that p cannot be characterized up to bisimulation equivalence by a
single recursion free formula. To see this we assume that such a formula exists and
show that this leads to a contradiction. Towards a contradiction, we assume that
for some � 2M,

[[�]] = [p]⇠. (36)

In particular we have that

p |= � and 8q. q |= � =) q ⇠ p. (37)

We will obtain contradiction by proving that (37) cannot hold for any �. Before we
prove our statement we have to introduce some notation.

By the modal depth of the formula �, notationmd(�), we mean the maximum
number of nested occurrences of the model operators in �. Formally this is defined
by the following recursive definition:

1. md(tt) = md(ff) = 0,

2. md([a]�) = md(hai�) = 1 + md(�),

3. md(�

1

_ �

2

) = md(�

1

^ �

2

) = max{md(�

1

),md(�

2

)}.
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Figure 5: The processes p and p

i

for i  n

Next we define a sequence p

0

, p

1

, p

2

, . . . of processes inductively as follows:

1. p

0

= 0,

2. p

i+1

= a.p

i

.

(The processes p and p

i

, for i � 1, are depicted in Fig. 7.9.) Now we can prove the
following;

8�. p |= � implies p

md(�)

|= �. (38)

The statement in (38) can be proven by structural induction on � and is left as
an exercise. As obviously p and p

n

are not bisimulation equivalent for any n,
the statement in (38) contradicts (37). As (37) is a consequence of (36), we can
therefore conclude that no finite formula � can characterize the process p up to
bisimulation equivalence.

Example 7.9 shows us that in order to obtain a characteristic formula even for
finite labelled transition systems we need to make use of the recursive extension of
Hennessy-Milner logic.

The construction of the characteristic formula involves both suggesting a (syn-
tactic) equational system that describes the formula and to decide whether to adopt
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the minimal or the maximal solution to this system. We start by giving the equa-
tional system and choose the suitable interpretation for the fixed point afterwards.

We start by assuming that we have a finite transition system

({p

1

, . . . , p

n

},Act, ! )

and a set of variables X = {X

p

1

, . . . , X

pn , . . .} that contains (at least) as many
variables as there are states in the transition system. Intuitively X

p

is the syntactic
symbol for the characteristic formula for p and its meaning will be given in terms
of an equational system.

A characteristic formula for a process has to describe both which actions the
process can perform, which action it cannot perform and what happens to it after it
has performed each action. The following example illustrates this.

Example 7.10 If a coffee machine is given by Figure 6, we can construct a char-
acteristic formula for it as follows.

✓⌘
◆⇣

✓⌘
◆⇣

- �

?

k

m

t

gkm

q

Figure 6: The nice coffee machine gkm.

Let gkm be the initial state of the coffee machine. Then we see that gkm can
perform anm-action and that this is the only action it can perform in this state. The
picture also shows us that gkm, by performing the m action necessarily will end
up in state q. This can be expressed as follows.

1. gkm can performm and become q.
2. No matter how gkm performsm it becomes q.
3. gkm cannot perform any other actions thanm.

If we let X

gkm

and X

q

denote the characteristic formula for q and gkm respec-
tively, X

gkm

can be expressed as

X

gkm

⌘ hmiX
q

^ [m]X

q

^ [t, k]ff
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where hmiX
q

expresses 1, [m]X

q

expresses 2 and [t, k]ff expresses 3. To ob-
tain the characteristic formula for gkm we have to express X

q

following the same
strategy. We observe that q can perform two actions t and k and in both cases it
becomes gkm. X

q

can therefore be expressed as

X

q

⌘ htiX
gkm

^ hkiX
gkm

^ [t, k]X

gkm

^ [m]ff

Now we can generalize the strategy employed in the above example as follows: Let

Der(a, p) = {p

0 | p

a! p

0}.

If p

0 2 Der(a, p) and p

0 has a characteristic property X

p

0 , then p has the property
haiX

p

0 . For any a we have that

p |=
^

a,p

0
.p

a! p

0

haiX
p

0

Furthermore, if p a! p

0 then p

0 2 Der(a, p). Therefore p has the property

[a]

_

p

0
.p

a! p

0

X

p

0
,

and as a is arbitrary we have that

p |=
^

a

[a]

_

p

0
.p

a! p

0

X

p

0

If we summarize the above requirements, we have that

p |=
^

a,p

0
.p

a! p

0

haiX
p

0 ^
^

a

[a]

_

p

0
.p

a! p

0

X

p

0

As this property is apparently a complete description p, this is our candidate for the
characteristic property for p. X

p

is therefore defined as a solution to the equational
system obtained by giving the following equation for each q 2 Proc:

X

q

⌘
^

a,q

0
.q

a! q

0

haiX
q

0 ^
^

a

[a]

_

q

0
.q

a! q

0

X

q

0 (39)

The solution can either be the minimal or the maximal one (or something in be-
tween).

The following example shows that the minimal solution to (39) in general does
not yield the characteristic property for a process.
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✓⌘
◆⇣
↵�
?
p

a

Figure 7: Simple infinite process p.

Example 7.11 Let p be the process given in Figure 7.
In this case the equational system obtained by (39) will have the form

X

p

min

= haiX
p

^ [a]X

p

Obviously X

p

= ff is the minimal solution to this equation. However p does not
have the property ff which therefore cannot be the characteristic property for p.

In what follows we will show that the maximal solution to (39) yields the char-
acteristic property for all p 2 Proc. This is the content of the following theorem.

Theorem 7.6 Let (Proc,Act, ! ) be a finite transition system and for all p 2
Proc, let X

p

be defined by

X

p

max

=

^

a,p

0
.p

a! p

0

haiX
p

0 ^
^

a

[a]

_

p

0
.p

a! p

0

X

p

0
. (40)

Then X

p

is the characteristic property for p.

The assumption about Proc and Act being finite ensures that there is only a finite
number of variables involved in the definition of the characteristic formula and that
each case that we only get a finite formula (finite conjunctions and disjunctions) on
the right hand side of each equation.

In the proof of the theorem we will let D
K

be the declaration defined by

D

K

(X

p

) =

^

a,p.p

a! p

0

haiX
p

0 ^
^

a

[a]

_

p

0
.p

a! p

0

X

p

0
.

From the previous discussion, we get that X

p

is the characteristic property for
p if and only if for the maximal solution [[X

p

]], where p 2 Proc, we have that
[[X

p

]] = [p]⇠. In what follows, we write q|=
max

X

p

if q belongs to [[X

p

]] in the
maximal solution for D

K

.
As the first step in the proof of Theorem 7.6, we prove the following lemma:
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Lemma 7.2 Let X
p

be defined as in (40). Then we have that

q |=
max

X

p

) p ⇠ q

Proof: Let R = {(p, q) | q |=
max

X

p

}. We will prove that R is a bisimulation,
and thus that p ⇠ q. Therefore we have to prove the following:

a) (p, q) 2 R and p

b! p

1

) 9 q

1

. q

b! q

1

and (p

1

, q

1

) 2 R.

b) (p, q) 2 R and q

b! q

1

) 9 p

1

. p

b! p

1

and (p

1

, q

1

) 2 R.

a) Let (p, q) 2 R and p

b! p

1

, which in turn means that

q |=
max

X

p

and p

b! p

1

From the definitions of X
p

and D

K

it follows that

q |=
max

X

p

max

= q |=
max

(

^

a,p

0
.p

a! p

0

haiX
p

0
) ^ (

^

a

[a]

_

p

0
.p

a! p

0

X

p

0
)

As p

b! p

1

we get that q |=
max

hbiX
p

1

, which means that

9q
1

. q

b! q

1

and q

1

|=
max

X

p

1

or
9q

1

.q

b! q

1

and (p

1

, q

1

) 2 R.

as we wanted to prove.

b) Let (p, q) 2 R and q

b! q

1

, i.e.

q |=
max

X

p

and q

b! q

1

As before we have

q |=
max

X

p

=) q |=
max

(

^

a,p.p

a! p

0

haiX
p

0
) ^ (

^

a

[a]

_

p

0
.p

a! p

0

X

p

0
) .

In particular we get
q |=

max

[b]

_

p

0
.p

b! p

0

X

p

0
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which means that

q

b! q

0 ) q

0 |=
max

_

p

0
.p

b! p

0

X

p

0
.

As we know that q b! q

1

, we obtain that

q

1

|=
max

_

p

0
.p

b! p

0

X

p

0
.

Therefore there must exist a p

1

such that q
1

|=
max

X

p

1

and p

b! p

1

.
We have therefore proven that

9p
1

. p

b! p

1

and (p

1

, q

1

) 2 R .

We have now shown that R is a bisimulation, and therefore that

q |=
max

X

p

=) p ⇠ q

This proves the lemma. 2

The following lemma completes the proof of our main theorem of this section.

Lemma 7.3 ([p

1

]⇠, . . . , [p

n

]⇠) v [[D

K

]]([p

1

]⇠, . . . , [p

n

]⇠).

Proof: Let q 2 [p]⇠, where p is one of p
1

, . . . , p

n

. We have to show that

q 2 (

\

a,p

0
.p

a! p

0

h·a·i[p0
]⇠) \ (

\

a

[·a·]
[

p

0
.p

a! p

0

[p

0
]⇠).

The proof can be divided into two parts:

1) q 2 T

a,p

0
.p

a! p

0

h·a·i[p0
]⇠

2) q 2 T
a

[·a·] S

p

0
.p

a! p

0

[p

0
]⇠

1) We recall that q ⇠ p. Assume that p a! p

0. Then there is a q

0, where q

a! q

0 and
q

0 ⇠ p

0. We have therefore shown that

8a, p

0
, p

a! p

0
. (9q0

. q

a! q

0 and q

0 2 [p

0
]⇠)

or that
q 2

\

a,p

0
.p

a! p

0

h·a·i[p0
]⇠
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2) Let a 2 Act and q

a! q

0, we have to show that q0 2 S

p

0
.p

a! p

0

[p

0
]⇠. But as p ⇠ q,

there exists a p

0, such that p a! p

0 and q

0 ⇠ p

0. The last statement means that
q

0 2 [p

0
]⇠. We have therefore proven that

8a, q

0
. q

a! q

0 ) 9p0
. p

a! p

0 and q 2 [p

0
]⇠,

which is equivalent to

q 2
\

a

[·a·]
[

p

0
.p

a! p

0

[p

0
]⇠.

1) and 2) give that :

([p

1

]⇠, . . . , [p

n

]⇠) v [[D

K

]]([p

1

]⇠, . . . , [p

n

]⇠)

as we wanted to prove. 2

The proof of Theorem 7.6 can now be expressed as the following lemma.

Lemma 7.4 For all p 2 Proc we have that [[X
p

]] = [p]⇠.

Proof: By Lemma 7.3 we get that

([p

1

]⇠, . . . , [p

n

]⇠)  ([[X

P

1

]], . . . , [[X

Pn ]])

which means that [p]⇠ ✓ [[X

p

]] for each p 2 Proc. Furthermore Lemma 7.2 gives
that [[X

p

]] ✓ [p]⇠ for every p 2 Proc, which proves the statement of the lemma. 2

7.8 Mixing maximal and minimal fixed points

The equational systems we have considered so far have only allowed us to ex-
press solutions as a pure maximal or a minimal solution. Our next question is
whether we can extend our framework in such a way that it can treat mixed solu-
tions, i.e., whether it is possible to decide the solution of, for instance,

X

max

= haiY
Y

min

= hbiX.

If we allow fixed points to be mixed completely freely we obtain modal µ-calculus
[13], which was mentioned in Sect. 7.1. In this note we shall however not allow
a full freedom in mixing fixed points in declarations but restrict the mixing to
what we call nested mutual recursion. In this framework we are allowed to use
solutions to purely maximal or purely minimal equational set in the definition of a
new mutually recursive equational set.
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Definition 7.2 A n-nested mutually recursive equational system E is an n-tuple

h (D
1

, X
1

,m

1

), (D

2

, X
2

,m

2

), . . . , (D

n

, X
n

,m

n

) i,
where, for each i  n,

• X
i

is a finite set of variables,

• D

i

: X
i

�! S
ji

X
i

,

• m

i

= max orm
i

= min

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Tarski.html


The appendix is organized as follows. Section A.1 introduces partially ordered
sets and complete lattices. We then proceed to state and prove Tarski’s fixed point
theorem (Section A.2). Finally, we show in Section A.3 how to define strong bisim-
ulation equivalence using Tarski’s fixed point theorem, and hint at the algorithm for
computing strong bisimulation equivalence over finite labelled transition systems
that results from this reformulation.

A.1 Complete Lattices

Definition A.1 [Partially Ordered Sets] A partially ordered set (poset) is a pair
(D,v), whereD is a set, andv is a binary relation overD (i.e, a subset ofD⇥D)
such that:

• v is



Definition A.2 [Least Upper Bounds and Greatest Lower Bounds] Let (D,v) be
a poset, and take X ✓ D.

• We say that d 2 D is an upper bound for X iff x v d for all x 2 X . We say
that d is the least upper bound (lub) of X , notation

F
X , iff d is an upper

bound for X and, moreover, d v d

0 for every d

0 2 D which is an upper
bound for X .

• We say that d 2 D is a lower bound for X iff d v x for all x 2 X . We say
that d is the greatest lower bound (glb) of X , notation

d
X , iff d is a lower

bound forX and, moreover, d0 v d for every d

0 2 D which is a lower bound
for X .

Exercise A.2 Let (D,v) be a poset, and take X ✓ D. Prove that the lub and the
glb of X are unique, if they exist.

Example A.2

• In the poset (IN,), all finite subsets of IN have least upper bounds. On the
other hand, no infinite subset of IN has an upper bound. All subsets of IN
have a least element, which is their greatest lower bound.

• In (P(S),✓), every subsetX of P(S) has a lub and a glb given by
S

X andT
X , respectively.

Exercise A.3

1. Prove that the lub and the glb of a subset X of P(S) are indeed
S

X andT
X , respectively.

2. Give examples of subsets of A⇤ that have upper bounds in the poset (A⇤
,).

Definition A.3 [Complete Lattices] A poset (D,v) is a complete lattice iff
F

X

and
d

X exist for every subset X of D.

Note that a complete lattice (D,v) has a least element? =

d
D, and a top element

T =

F
D.

Exercise A.4 Let (D,v) be a complete lattice. What are
F ; and d ;?
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Example A.3

• The poset (IN,) is not a complete lattice because, as remarked previously,
it does not have lub’s for its infinite subset.

• The poset (IN[{1},v), obtained by adding a largest element1 to (IN,),
is a complete lattice. This complete lattice can be pictured as follows:

1
...
"
2

"
1

"
0

• (P(S),✓) is a complete lattice.

A.2 Tarski’s Fixed Point Theorem

Definition A.4 [Monotonic Functions and Fixed Points] Let (D,v) be a poset.
A function f : D ! D is monotonic iff for all d, d

0 2 D, d v d

0 implies that
f(d) v f(d

0
).

An element d 2 D is called a fixed point of f iff d = f(d).

The following important theorem is due to TARSKI [23], and was also indepen-
dently proven by KNÄSTER.

Theorem A.1 [Tarski’s Fixed Point Theorem] Let (D,v) be a complete lattice,
and let f : D ! D be monotonic. Then f has a largest fixed point z

max

and a least
fixed point z

min

given by:

z

max

=

G
{x 2 D | x v f(x)}

z

min

=

l
{x 2 D | f(x) v x}

Proof: First we shall prove that z
max

is the largest fixed point of f . This involves
proving the following two statements:

1. z

max

is a fixed point of f , i.e., z
max

= f(z

max

), and

2. for every d 2 D that is a fixed point of f , it holds that d v z

max

.
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In what follows we prove each of these statements separately. In the rest of the
proof we let

A = {x 2 D | x v f(x)}.

1. To prove that z
max

is a fixed-point of f , it is sufficient to show that

z

max

v f(z

max

) and (42)
f(z

max

) v z

max

. (43)

First of all, we shall show that (42) holds. By definition, we have that

z

max

=

G
A.

Thus, for every x 2 A, it holds that x v z

max

. As f is monotonic, x v z

max

implies that f(x) v f(z

max

). It follows that, for every x 2 A, x v f(x) v
f(z

max

). Thus f(z

max

) is an upper bound for the set A. By definition, z
max

is the least upper bound of A. Thus z

max

v f(z

max

), and we have shown
(42).
To prove that (43) holds, note that, from (42) and the monotonicity of f , we
have that f(z

max

) v f(f(z

max

)). This implies that f(z

max

) 2 A. Therefore
f(z

max

) v z

max

, as z

max

is an upper bound for A.
From (42) and (43), we have that z

max

v f(z

max

) v z

max

. By antisymme-
try, it follows that z

max

= f(z

max

), i.e., z
max

is a fixed point of f .

2. We now show that z

max

is the largest fixed point of f . Let d be any fixed
point of f . Then, in particular, we have that d v f(d). This implies that
d 2 A and therefore that d v F

A = z

max

.
We have thus shown that z

max

is the largest fixed point of f .

To show that z
min

is the least fixed point of f , we proceed in a similar fashion by
proving the following two statements:

1. z

min

is a fixed point of f , i.e., z
min

= f(z

min

), and

2. for every d 2 D that is a fixed point of f , z
min

v d.

To prove that z
min

is a fixed point of f , it is sufficient to show that:

f(z

min

) v z

min

and (44)
z

min

v f(z

min

). (45)

Claim (44) can be shown following the proof for (42), and claim (45) can be shown
following the proof for (43). The details are left as an exercise for the reader.
Having shown that z

min

is a fixed point of f , it is a simple matter to prove that it is
indeed the least fixed point of f . (Do this as an exercise). 2
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Exercise A.5 Reconsider equations (23)–(26) in the main body of the text.

1. Why doesn’t Tarski’s fixed point theorem apply to yield a solution to the first
two of these equations?

2. Does equation (23) have a solution in the structure introduced in the second
bullet of Example A.3?

3. Can you use Tarski’s fixed point theorem to find the largest and least solu-
tions of (26).

Exercise A.6

1. Prove that if (D,v) is a cpo and f : D ! D is continuous (see [16, Page
103]), then the poset

({x 2 D | f(x) = x},v)

which consists of the set of fixed points of f is a cpo.

2. Give an example of a complete lattice (D,v) and of a monotonic function
f : D ! D such that there are x, y 2 D that are fixed points of f , butF{x, y} is not a fixed point. [Hint: Consider the complete latticeD pictured
below

•
"
•

% -
• •
- %

•
and construct such an f : D ! D.]

3. Let (D,v) be a complete lattice, and let f : D ! D be monotonic. Con-
sider a subset X of {x 2 D | x v f(x)}.
(a) Prove that

F
X 2 {x 2 D | x v f(x)}.

(b) Give an example showing that, in general,
d

X 62 {x 2 D | x v
f(x)}. [Hint: Consider the lattice pictured above, but turned upside
down.]

4. Let (D,v) be a complete lattice, and let f : D ! D be monotonic. Con-
sider a subset X of {x 2 D | f(x) v x}.
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(a) Prove that
d

X 2 {x 2 D | f(x) v x}.
(b) Give an example showing that, in general,

F
X 62 {x 2 D | f(x) v

x}. [Hint: Use your solution to exercise 2 above.]

5. Let (D,v) be a complete lattice.

(a) Let D !
mon

D be the set of monotonic functions from D to D and �
be the relation defined on D !

mon

D by

f � g iff 8d 2 D. f(d) v g(d).

Show that � is a partial order on D !
mon

D.
(b) Let

W
and

V
be defined on D !

mon

D by:

If F ✓ D !
mon



of elements of D. As D is finite, the sequence must be eventually constant, i.e.,
there is anm such that fk

(?) = f

m

(?) for all k � m. In particular f(f

m

(?)) =

f

m+1

(?) = f

m

(?) which is the same as saying that fm

(?) is a fixed point for f .
To prove that f

m

(?) is the least fixed point for f , assume that d is another
fixed point for f . Then we have that ? v d and therefore, as f is monotonic, that
? v f(?) v f(d) = d. By repeating this reasoningm�1 more times we get that
f

m

(?) v d. We can therefore conclude that fm

(?) is the least fixed point for f .
The proof of the statement that characterizes largest fixed points is similar, and

left as an exercise for the reader. 2

A.3 Bisimulation as a Fixed Point

Let (Proc,Act, { a! | a 2 Act}) be a labelled transition system. We recall that a
relation S ✓ Proc⇥ Proc is a strong bisimulation [15] if the following holds:

If (p, q) 2 S then, for every ↵ 2 Act:
1. p

↵! p

0 implies q

↵! q

0 for some q

0 such that (p0
, q

0
) 2 S.

2. q

↵! q

0 implies p

↵! p

0 for some p

0 such that (p0
, q

0
) 2 S.

Then strong bisimulation equivalence (or strong equality) is defined as

⇠ =

[
{S 2 P(Proc⇥ Proc) | S is a strong bisimulation}.

In what follows we shall describe the relation⇠ as a fixed point to a suitable mono-
tonic function. First we note that (P(Proc ⇥ Proc),✓) (i.e., the set of binary re-
lations over Proc ordered by set inclusion) is a complete lattice with

S
and

T
as

the lub and glb. (Check this!) Next we define a function F : P(Proc⇥Proc) �!
P(Proc⇥ Proc) as follows.

(p, q) 2 F(S) if and only if:

1. p

↵! p

0 implies q

↵! q

0 for some q

0 such that (p0
, q

0
) 2 S.

2. q

↵! q

0 implies p

↵! p

0 for some p

0 such that (p0
, q

0
) 2 S.

Then S is a bisimulation if and only if S ✓ F(S) and consequently

⇠ =

[
{S 2 P(Proc⇥ Proc) | S ✓ F(S)}.

We note that if S, R 2 P(Proc ⇥ Proc) and S ✓ R then F(S) ✓ F(R) (check
this!), i.e., F is monotonic over (P(Proc ⇥ Proc),✓). Therefore, as all the con-
ditions for Tarski’s Theorem are satisfied, we can conclude that ⇠ is the greatest
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fixed point of F . In particular, by Theorem A.2, if Proc is finite then ⇠ is equal
to FM

(Proc ⇥ Proc) for some M � 0. Note how this gives us an algorithm
to calculate ⇠ for a given finite labelled transition system: To compute ⇠, simply
evaluate the non-increasing sequenceF i

(Proc⇥Proc) for i � 0 until the sequence
stabilizes.

Example A.4 Consider the labelled transition system described by the following
equations:

Q

1

= b.Q

2

+ a.Q

3

Q

2

= c.Q

4

Q

3

= c.Q

4

Q

4

= b.Q

2

+ a.Q

3

+ a.Q

1

.

In this labelled transition system, we have that

Proc = {Q

i

| 1  i  4} .

Below, we use I to denote the identity relation over Proc—that is,

I = {(Q

i

, Q

i

) | 1  i  4} .

We calculate the sequence F i

(Proc⇥ Proc) for i � 1 thus:

F1

(Proc⇥ Proc) = {(Q

1

, Q

4

), (Q

4

, Q

1

), (Q

2

, Q

3

), (Q

3

, Q

2

)} [ I

F2

(Proc⇥ Proc) = {(Q

2

, Q

3

), (Q

3

, Q

2

)} [ I and finally
F3

(Proc⇥ Proc) = F2

(Proc⇥ Proc) .

Therefore, the only distinct processes that are related by the largest strong bisimu-
lation over this labelled transition system are Q

2

and Q

3

.

Exercise A.7

1. Using the iterative algorithm described above, compute the largest strong
bisimulation over the following transition system:

P

1

= a.P

2

P

2

= a.P

1

P

3

= a.P

2

+ a.P

4

P

4

= a.P

3

+ a.P

5

P

5

= 0 .
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2. What is the worst case complexity of the algorithm outlined above when run
on a labelled transition system consisting of n states and m transitions?

3. Give a similar characterization for observational equivalence as a fixed
point for a monotonic function.
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