
Theme 1: Abstract Reasoning

Lecture 2: Logic-based Program Specification

Matthieu Sozeau

Inria & Paris Diderot University, Paris 7

October 2014

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 1 / 1

Abstract Specification of a Function

Consider a function
f : Dom→ CoDom

How to describe in an abstract way its behavior ?

Abstraction: No implementation details.

Specification: A relation Spec f between inputs and outputs of f

Spec f (In;Out) ⊆ Dom × CoDom

What is a suitable (natural) formalism for describing such a relation?

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 2 / 1

Logic-based Specification Language

Example: Specification of the Append function:

Spec Append(‘1; ‘2; ‘) =
|‘| = |‘1|+ |‘2| ∧
∀i ∈ Nat: (i < |‘1|)⇒ ‘[i] = ‘1[i] ∧
∀i ∈ Nat: (i < |‘2|)⇒ ‘[|‘1|+ i] = ‘2[i]

where:

∀‘ ∈ List[?]: ∀i ∈ Nat: ∀e ∈ ?: ‘[i] = e ⇐⇒
(i < |‘|) ∧
∃‘′:

�
‘ = a · ‘′ ∧
((i = 0 ∧ e = a) ∨ (i > 0 ∧ ‘′[i − 1] = e))

�
⇒ First-order logic over data domains (natural numbers, lists, etc.),
with recursive predicates.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 3 / 1

Domains of Interpretation

Data domain with a set of operations and predicates
I Consider a data domain D
I Let Op be a set of operations interpreted as functions over D
I Let Pred be a set of predicates interpreted as relations over D

Remark:
Here the set Op may include constants, seen as operators of arity 0.

Domain of interpretation is a triple (D;Op;Rel).

Examples of domains of interpretation:
I (Bool ; {tt; ff; not; or; and}; {=})
I (Nat; {0; s;+}; {≤})
I (List[?]; {[]; ·;@}; {=})

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 4 / 1

First Order Logic over a Data Domain

Let (D;Op;Pred) be a domain of interpretation.

Let Var be a set of variables.

Terms:
t ::= v ∈ Var | op(t; : : : ; t)

where v ∈ Var and op ∈ Op.

Examples: x , 2, x + 2, x + y + 3, and 2x as an abbreviation of x + x .

Terms are interpreted as elements of the domain D:
I Let � : Var → D be a valuation of the variables.

I Then, 〈t〉ν is the value in D obtained by the evaluation of t, using � as
valuation of the variables.

I Example: Given � = {(x ; 2); (y ; 1); (z ; 4)}, we have

〈x〉ν = 2 〈x + 2y〉ν = 4 〈(x ∗ z) + (y + 1)〉ν = 10

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 5 / 1

First Order Logic: Syntax of formulas

Formulas (p ∈ Pred and v ∈ Var).

� ::= > | ⊥ |p(t1; : : : ; tn) | � ∨ � | � ∧ � | ∃v : � | ∀v : � | �⇒ �

Abbreviations: ¬� ::= (�⇒ ⊥); � ⇐⇒ �′ ::= �⇒ �′ ∧ �′ ⇒ �

An occurrence of a variable x is bound in a formula � if it is under a

quantifier ∃x or ∀x . We consider only well-formed formulas where all

occurrences of a variable are either bound or unbound (x = 0 ∨ ∃x ; x = 1 is

not well-formed). A variable is free in � if its occurrences in � are unbound.

A formula is closed if it has no free variables.

Examples:
I �1 = ∀x ; y : x ≤ y ⇒ ∃z : (x ≤ z ∧ z < y) is a closed formula.
I �2 = ∃x : ∀y : x ≤ y is a closed formula.
I �3 = ∀y : x ≤ y , is an open formula. It has x as free variable.
I �4 = x ≤ y ∧ ∃z : y ≤ z ∧ z ≤ 5 is an open formula. Its free variables

are x and y .

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 6 / 1

First Order Logic: Semantics of formulas
Given a valuation � : Var → D of the free variables, we can define an
interpretation �[�] which replaces every occurrence of a free variable by its
associated value:

x [�] = �(x)

p(t1; : : : ; tn)[�] = p(t1[�]; : : : ; tn[�])

(� ∧ �′)[�] = �[�] ∧ �′[�]

(� ∨ �′)[�] = �[�] ∨ �′[�]

(∀v : �)[�] = ∀v : �[�]

(∃v : �)[�] = ∃v : �[�]

(�⇒ �′)[�] = �[�]⇒ �′[�]

(x = 3)[x 7→ 2] = 2 = 3

(∃x ; x = y)[y 7→ 3] = ∃x ; x = 3

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 7 / 1

First Order Logic: Semantics of formulas

Given a valuation �, we say � satisfies � if and only if �[�] is true,
i.e., when interpreting the formula using �, the formula is valid.

Formulas are interpreted as relations over D, i.e., the sets of
valuations of the variables that satisfy the formula.

Let [[�]] be the set of valuations � which satisfy �.

A formula is valid if it is satisfied by all valuations. A formula is
satisfiable if there exists at least one valuation that satisfies it.

Remark:
Closed formulas are either valid or not: Their value does not

depend on the variable valuation. Either all variable valuations

satisfy them, or none of the valuations can satisfy them.

Question: what can we say about the formulas in the previous slides?

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 8 / 1

First Order Logic: proving validity

To show the validity of a quantified formula, we must formally prove it:

p(t1; : : : ; tn): by hypothesis, or definition of p.

¬�: assume �, prove contradiction (⊥)

� ∨ �′: prove � or prove �′.

� ∧ �′: prove both � and �′.

∃v : �: provide a witness t for v and show �[v 7→ t].

∀v : �: assume a variable v and show �.

�⇒ �′: assume an hypothesis H : � and show �′.

Example: ¬∃x ; x < 0. Where x < y is defined by ∃n; x + s(n) = y .
Proof: Assume H : ∃x ; x < 0. We must prove a ⊥. The hypothesis H is
equivalent to assuming x , n and an hypothesis:
x + s(n) = 0 ⇐⇒ s(x + n) = 0. However,
∀n; s(n) 6= 0 ⇐⇒ ∀n; s(n) = 0⇒ ⊥, hence a contradiction. �

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 9 / 1

Valid, invalid, satisfisable or unsatisfiable?

�1 = ∀x ; y : x ≤ y ⇒ ∃z : (x ≤ z ∧ z < y)

�2 = ∃x : ∀y : x ≤ y

�3 = ∀y : x ≤ y

�4 = ∀x y : x ≤ y

�5 = x ≤ y ∧ ∃z : y ≤ z ∧ z ≤ 5

�6 = x = 3

�7 = ∃x ; x = y

�8 = ∀x y ; x ≤ y ⇒ x < y ∨ x = y

�9 = ∃x y ; x < y ∧ x > y

�10 = ∃x ; x < y

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 10 / 1

Example: The head and tail functions

head function:

head : List[?]→ ?

Spec head(‘; a) = ∃‘′ ∈ List[?]: ‘ = a · ‘′

tail function:

tail : List[?]→ List[?]

Spec tail(‘; ‘′) = ∃a ∈ ?: ‘ = a · ‘′

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 11 / 1

Multi-sorted Logics

In general we need to reason about several data domains
simultaneously.

We will consider domains of interpretation of the form

(D1; : : : ;Dn;Op;Rel)

where the operations and relations are defined over one or several of
the data domains D1; : : : ;Dn.

Example: (List[?];Nat; {[]; ·;@; Lgth;At; 0; s;+}; {=;≤})

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 12 / 1

Specifying a sorting function

Define an Input-Output relation Spec Sort(‘; ‘′) ?

The output list is ordered:

Ordered(‘) = ∀i ; j ;∈ Nat: (i < j < |‘| ⇒ ‘[i] ≤ ‘[j])

Is it complete ?

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 13 / 1

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?];Nat; {[]; ·;@; Lgth;At; 0; s;+}; {=;≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat: i < |‘1| ⇒ ∃j ∈ Nat: (j < |‘2| ∧ ‘1[i] = ‘2[j])
∧ ∀i ∈ Nat: i < |‘2| ⇒ ∃j ∈ Nat: (j < |‘1| ∧ ‘1[i] = ‘2[j])

Still not sufficient: ‘1 = [2; 5; 2] and ‘2 = [2; 5]

The input and output lists have the same length: |‘1| = |‘2|

Counter-example: ‘1 = [2; 5; 2] and ‘2 = [5; 2; 5]

We must count the number of occurrences of each element!

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 14 / 1

Multisets

The domain of multisets/bags: Multiset[?] ≡ ?→ Nat

Operations on multisets:
I ∅ : Multiset[?]
I Sg : ?→ Multiset[?]
I] : Multiset[?]×Multiset[?]→ Multiset[?]

Definitions:
I ∅ = �x ∈ ?: 0
I Sg(a) = �x ∈ ?: if x = a then 1 else 0
I M1]M2 = �x ∈ ?: M1(x) + M2(x)

Example:
Sg(0)] (Sg(5)] Sg(0)) =
�x ∈ Nat: if x = 0 then 2 else (if x = 5 then 1 else 0)

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 15 / 1

Multisets: Properties

Neutral element: ∅]M = M] ∅ = M

Commutativity: M1]M2 = M2]M1

Associativity: M1] (M2]M3) = (M1]M2)]M3

Proofs: Use properties of natural numbers.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 16 / 1

From Lists to Multisets

Abstracting order in a list:

Ms : List[?] → Multiset[?]

Definition:

Ms([]) = ∅
Ms(a · ‘) = Sg(a)]Ms(‘)

Example: Ms(b · a · b · []) =
�x ∈ ?: if x = a then 1 else if x = b then 2 else 0

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 17 / 1

From Lists to Multisets (cont.): Properties

Ms(‘1@‘2) = Ms(‘2@‘1) = Ms(‘1)]Ms(‘2)

Ms(Rev(‘)) = Ms(‘)

Proofs: Induction the structure of lists.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 18 / 1

Specifying a sorting function (cont.)

Spec Sort(‘; ‘′) =

∀i ; j ;∈ Nat: (i < j < |‘| ⇒ ‘′[i] ≤ ‘′[j])
∧

Ms(‘) = Ms(‘′)

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 19 / 1

Inductive Predicates
Inductive predicates give an alternative way to define relations in logic.
To specify evennees we can define even : Nat → prop inductively by:

even0 : even 0

evenS : ∀n; even n⇒ even s(s(n))

Compare with the definition: even n = ∃k; 2 ∗ k = n

The two definitions are equivalent.

Using one or the other depends on the statement we want to prove.

Some properties are easier to express and reason about as inductive
predicates.

One can show negative properties easily, i.e. ¬even(1): Suppose
H : even 1 and try to prove ⊥. By case analysis on H:

Case even0: 1 = 0, by contradiction.

Case even0: 1(= s(0)) = s(s(n′)), by contradiction on 0 = s(n′).

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 20 / 1

Inductive Predicates: less-than

For example, <: Nat → Nat → prop can be defined inductively as:

lt0 : ∀x ; 0 < s(x)

ltS : ∀x y ; x < y ⇒ s(x) < s(y)

To prove properties about inductive predicates, we can use induction: For
example, to prove ∀x : Nat; x < s(x) :
Proof: By induction on x :

Case x = 0. We must prove 0 < s(0). By lt00 : 0 < s(0).

Case x = s(x ′). We have the induction hypothesis x ′ < s(x ′).
We must prove s(x ′) < s(s(x ′)).
We can apply ltS x ′ s(x ′) : x ′ < s(x ′)⇒ s(x ′) < s(s(x ′)) to simplify
this to x ′ < s(x ′).
This is the induction hypothesis.

�

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 21 / 1

Inductive Predicates: less-than
One can also use induction directly on the predicate, in which case we get
one case for each constructor of the inductive predicate:
Proving ∀x y : Nat; x < y ⇒ 2 ∗ x < 2 ∗ y :
Proof: By induction on the hypothesis x < y :

Case lt0 : x = 0; y = s(y ′). We must prove 2 ∗ 0 < 2 ∗ s(y ′), by
simplification we must prove 0 < s(y ′ + s(y ′)). By lt0.

Case ltS : x = s(x ′); y = s(y ′) and induction hypothesis:
2 ∗ x ′ < 2 ∗ y ′ ↔ x ′ + x ′ < y ′ + y ′.
We must prove 2 ∗ s(x ′) < 2 ∗ s(y ′). By simplification we must prove:
s(x ′ + s(x ′)) < s(y ′ + s(y ′)).
We can apply
ltS : x ′ + s(x ′) < y ′ + s(y ′)⇒ s(x ′ + s(x ′)) < s(y ′ + s(y ′))
To simplify this to x ′ + s(x ′) < y ′ + s(y ′).
By lemmas on addition this is equivalent to s(x ′ + x ′) < s(y ′ + y ′)
We can apply ltS and the induction hypothesis to conclude.

�
M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 22 / 1

Inductive Predicates: permutation

perm : List[?]→ List[?]→ prop can also be defined inductively using:

permnil : perm [] []

permskip : ∀x l l ′; perm l l ′ ⇒ perm (x · l) (x · l ′)
permswap : ∀x y l ; perm (x · y · l) (y · x · l)
permtrans : ∀l l ′ l ′′; perm l l ′ ⇒ perm l ′ l ′′ ⇒ perm l l ′′

Ms(‘) = Ms(‘′) ⇐⇒ perm ‘ ‘′

Proofs:

⇒ by induction on ‘ and ‘′ and case analysis.

⇐ by induction on the proof perm ‘ ‘′

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 23 / 1

Conclusion

Specifications are abstract definitions of the effect of functions

No implementation details are imposed.

Logic is a natural language for the abstract description of
input-output relations

Abstraction allows modular design:
I The user of a function needs only to know its specification.
I The implementor must ensure the satisfaction of the specification.

There might be different ways to express the same specification, using
recursive or inductive predicates.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 24 / 1

