Abstract Specification of a Function

Theme 1: Abstract Reasoning o Consider a function

f : Dom — CoDom

Lecture 2: Logic-based Program Specification o , _
@ How to describe in an abstract way its behavior ?

@ Abstraction: No implementation details.

Matthieu Sozeau @ Specification: A relation Spec_f between inputs and outputs of f

Inria & Paris Diderot University, Paris 7 Spec f(ln Out) C Dom x CoDom

@ What is a suitable (natural) formalism for describing such a relation?

October 2014

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 1/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 2/1

Logic-based Specification Language Domains of Interpretation

@ Example: Specification of the Append function: o Data domain with a set of operations and predicates

Spec_Append(*1; “2; ‘) = 1 Consider a data domain D
[=11+ 12| A 1 Let Op be a set of operations interpreted as functions over D
Vie Nat: (i <|*1]) = “[i] = “1[]] A I Let Pred be a set of predicates interpreted as relations over D
Vi€ Nat: (i < |2]) = “[|“1] +i] = “2[i]
@ Remark:
where: Here the set Op may include constants, seen as operators of arity 0.
V* € List[?]: Vi € Nat:Ve € ?: ‘[=e <—)) o)
(i<) A e Domain of interpretation is a triple (D; Op; Rel).

I3 f=a-“A
(i=0ne=a)V(i=0A“]i—1] =¢))

Examples of domains of interpretation:
I (Bool;{tt; ff;not;or;and}; {=})

, , , , 1 (Nat; {0;s;+};{<})
e = First-order logic over data domains (natural numbers, lists, etc.), v (List[?]; [@ {=})

with recursive predicates.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 3/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 4/1

First Order Logic over a Data Domain

e Let (D; Op; Pred) be a domain of interpretation.
@ Let Var be a set of variables.

@ Terms:

where v € Var and op € Op.
@ Examples: x, 2, x+2, x4+ y + 3, and 2x as an abbreviation of x + x.

@ Terms are interpreted as elements of the domain D:
1 Let : Var — D be a valuation of the variables.

I Then, (t), is the value in D obtained by the evaluation of ¢, using as
valuation of the variables.

1 Example: Given = {(x;2);(y;1);(z;4)}, we have
(Ko =2 (x+2y)y =4 ((x+2)+(y+1)) =10

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 5/1

First Order Logic: Semantics of formulas

Given a valuation : Var — D of the free variables, we can define an
interpretation [| which replaces every occurrence of a free variable by its
associated value:

x[] = (%
pltiista)l] = plal Lt 1)
(AT = [1]
(v Ll = [1v 1]

(Ve)] = vvi []
Bv:)1 = 3w []
(=1 = [1= 1]

o (x=3)[x—2]=2=3
o (Ix;x=y)ly—3l=3x;x=3

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 7/1

First Order Logic: Syntax of formulas

e Formulas (p € Pred and v € Var).

@ Abbreviations: = =(= 1); <= ‘1= = 'A =

@ An occurrence of a variable x is bound in a formula if it is under a
quantifier Ix or Vx. We consider only well-formed formulas where all
occurrences of a variable are either bound or unbound (x =0V 3x;x =1is
not well-formed). A variable is free in if its occurrences in are unbound.
A formula is closed if it has no free variables.

@ Examples:

1 =Vxyix<y=3z: (x <zAz<y)is a closed formula.

1, =3dx:Vy:x <y is a closed formula.

1 3=Vy:x <y, isan open formula. It has x as free variable.

1 4, =x<yA3dziy <zAz<5isan open formula. Its free variables
are x and y.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 6/1

First Order Logic: Semantics of formulas

e Given a valuation , we say satisfies if and only if [] is true,
i.e., when interpreting the formula using , the formula is valid.

@ Formulas are interpreted as relations over D, i.e., the sets of
valuations of the variables that satisfy the formula.

o Let [] be the set of valuations which satisfy

@ A formula is valid if it is satisfied by all valuations. A formula is
satisfiable if there exists at least one valuation that satisfies it.

@ Remark:
Closed formulas are either valid or not: Their value does not
depend on the variable valuation. Either all variable valuations
satisfy them, or none of the valuations can satisfy them.

@ Question: what can we say about the formulas in the previous slides?

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 8/1

First Order Logic: proving validity Valid, invalid, satisfisable or unsatisfiable?

To show the validity of a quantified formula, we must formally prove it:

Example: —3x;x < 0. Where x < y is defined by 3n;x + s(n) = y. s=Vxy;x<y=x<yVx=y
Proof: Assume H : 3x;x < 0. We must prove a L. The hypothesis H is
equivalent to assuming x, n and an hypothesis:

x+s(n)=0 <= s(x+ n)=0. However,

Vn;s(n) #0 <= Vn;s(n) =0 = L, hence a contradiction. O

g=3Ix Y, x<yAx>y

@ p(t1;:::;ta): by hypothesis, or definition of p. o 1=Vx;yix<y=3dzi(x<zAz<y)
@ — : assume , prove contradiction (L) o »=3dx:Vy:x<y
e V ':prove orprove . e 3=Vy:x<y
@ A ’:prove both and . o 4=Vxy:x<y
e Jv: : provide a witness t for v and show [v > t]. @ s=x<yAdzy<zAz<5h
@ VYv: : assume a variable v and show e g=x=3
@ = ': assume an hypothesis H: and show . o ;=dx;x=y
°
°
°

10=3x;x<y

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 9/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 10/1

Example: The head and tail functions Multi-sorted Logics

@ In general we need to reason about several data domains

@ head function: simultaneously.

head : List[?] — ?

Spec_head(*a) = 3% € List[?]: * = a- ¥ @ We will consider domains of interpretation of the form

@ tail function:

tail = List[?] — List[?]

Spec_tail(*;*') = Jae?“=a-"
o Example: (List[?]; Nat; {[]; -, ©; Lgth; At;0;s; +}; {=: <})

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 1/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 12/1

Specifying a sorting function Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in

Defi Input-Output relation Spec_Sort(“;*') ?
efine an Input-Output relation Spec_Sort(*;) FO(List[?]; Nat; {[]; -; ©; Lgth: At; 0; s; +}: {=; <})?

o The output list is ordered: @ Every element in the input appears in the output, and vice-versa:
Vi€ Nat: i <|*1] = 3j € Nat: (j < |*2| A “1[i] = “2l])
Ordered(*) = Vi, j; € Nat: (i <j < || = “[]] < “[j]) AVYI € Nat:i < |2 = 3Jj € Nat: (j <|[*1| A “1[i] = *2[j])

e Still not sufficient: “1 = [2;5;2] and 2 = [2;5]

@ Is it complete 7

@ The input and output lists have the same length: |“1| = |*2|
e Counter-example: ‘1 =[2;5;2] and “» = [5;2; 5]

@ We must count the number of occurrences of each element!

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 13/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 14 /1

Multisets Multisets: Properties

@ The domain of multisets/bags: Multiset[?] = ? — Nat

@ Operations on multisets:
1 () : Multiset[?)
1 Sg: ? — Multiset[?]
1 W Multiset[?] x Multiset[?] — Multiset|[?] o Commutativity: My My = My W My

o Definitions: @ Associativity: My W (Myw M3) = (My W My) W M3
1= xe?20

1 Sg(a)= x€7?if x=athenlelseO) .
VM My = x €2 Mi(x) + Ma(x) @ Proofs: Use properties of natural numbers.

o Neutral element: WM =MD =M

o Example:

5g(0) W (5g(5) w 5g(0)) =
x € Nat: if x =0 then 2 else (if x =5 then 1else 0)

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 15/1 M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 16 /1

From Lists to Multisets

@ Abstracting order in a list:
Ms : List[?] — Multiset[?]

@ Definition:

Ms(l) = 0
Ms(a-*) = Sg(a)w Ms(“)

e Example: Ms(b-a-b-[]) =
x€?.if x =athenlelseif x = bthen2else

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 17 /1

Specifying a sorting function (cont.)

Spec_Sort(*; ") =

Vi j;€ Nat: (i <j <= [<[]
A\
Ms(“) = Ms(*')

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 19/1

From Lists to Multisets (cont.): Properties

° I\/Is(‘l@‘2) = MS(‘z@‘l) = MS(‘l) G MS(‘Q)
e Ms(Rev(“)) = Ms(*)

@ Proofs: Induction the structure of lists.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 18/1

Inductive Predicates

Inductive predicates give an alternative way to define relations in logic.
To specify evennees we can define even : Nat — prop inductively by:

even0 : even O

evenS : Vn;even n = even s(s(n))

Compare with the definition: even n = 3k;2x k =n

@ The two definitions are equivalent.
@ Using one or the other depends on the statement we want to prove.
@ Some properties are easier to express and reason about as inductive
predicates.
One can show negative properties easily, i.e. —even(1): Suppose
H :even 1 and try to prove L. By case analysis on H:

@ Case even0: 1 =0, by contradiction.

@ Case even0: 1(= s(0)) = s(s(n’)), by contradiction on 0 = s(n’).

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 20/1

Inductive Predicates: less-than
For example, <: Nat — Nat — prop can be defined inductively as:
It0 @ Vx;0 < s(x)

ItS : Vxyix <y = s(x)<s(y)

To prove properties about inductive predicates, we can use induction: For
example, to prove Vx : Nat; x < s(x) :
Proof: By induction on x:

@ Case x = 0. We must prove 0 < s(0). By /t00 : 0 < s(0).
o Case x = s(x’). We have the induction hypothesis x’ < s(x’).
We must prove s(x’) < s(s(x")).
We can apply ItS x' s(x') : x' < s(x') = s(x’) < s(s(x")) to simplify
this to x’ < s(x).
This is the induction hypothesis.

O
M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 21 /1
Inductive Predicates: permutation
perm : List[?] — List[?] — prop can also be defined inductively using:
permnil : perm [] []
permskip : ¥x I I';perm | I' = perm (x- /) (x- /')
permswap : Vxy l;perm (x-y-1)(y-x-1)
permtrans . YII' I";perm | I' = perm I' I” = perm | "
Ms(*) = Ms(*') <= perm “ *
Proofs:
@ = by induction on “ and “/ and case analysis.
@ < by induction on the proof perm © */
M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 23/1

Inductive Predicates: less-than

One can also use induction directly on the predicate, in which case we get
one case for each constructor of the inductive predicate:

Proving Vx y : Nat;x <y = 2xx<2xy:

Proof: By induction on the hypothesis x < y:

@ Case /t0: x = 0;y = s(y’). We must prove 20 < 2 x s(y’), by
simplification we must prove 0 < s(y’ + s(y’)). By It0.

e Case ItS : x = s(x');y = s(y’) and induction hypothesis:
2% X <2xy o X+ X <y +y.
We must prove 2 x s(x’) < 2x s(y’). By simplification we must prove:
S(+ s(x)) < sy’ + s(v")).
We can apply
1S X+ 5(x) < y' + (') = s(x' + 5(x)) < (' + s(y"))
To simplify this to x" + s(x’) <y’ + s(y’).
By lemmas on addition this is equivalent to s(x’ + x') < s(y’ + y/)
We can apply ItS and the induction hypothesis to conclude.

g

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 22 /1

Conclusion

Specifications are abstract definitions of the effect of functions

@ No implementation details are imposed.

Logic is a natural language for the abstract description of
input-output relations

Abstraction allows modular design:

1 The user of a function needs only to know its specification.
I The implementor must ensure the satisfaction of the specification.

There might be different ways to express the same specification, using
recursive or inductive predicates.

M. Sozeau (Inria & UP7) L2: Logic-based Program Specification October 2014 24 /1

