
Theme 2: Correctness Proofs of Imperative Sequential Programs

Lecture 5:
Proving Program Termination

Matthieu Sozeau

Inria & Paris Diderot University, Paris 7

October 2014

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 1 / 16

Proving termination

How to prove termination of while loops?

Show that at each iteration, some quantity is decreasing.

This quantity should be a defined as a function of the program state.

Example: Why does this program terminates?

f : Nat ;

ifact (n : Nat) =
i : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

i := i + 1 ;
f := i ∗ f

Because n− i decreases at each iteration: n; n− 1; · · · ; 0.

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 2 / 16

Well founded relations (reminder)

Let E be a set, and let ≺⊆ E× E a binary relation over E.

The relation ≺ is well founded if it has no infinite descending chains,
i.e., no sequences of the form

e0 � e1 � · · · � ei � · · ·

(E;≺) is said to be a well founded set (WFS for short).

Thm: ≺ is well founded iff

∀F ⊆ E: F 6= ∅ ⇒ (∃e ∈ F: ∀e′ ∈ F: e′ 6≺ e)

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 3 / 16

Well founded relations: Examples/Non examples

(N; <) is a WFS.

(Z; <) is not a WFS.

(Z;@), where x @ y⇔ |x| < |y|, is a WFS.

(R≥0; <) is not a WFS.

(List[?]; <lgth) is a WFS, where ‘1 <lgth ‘2 ⇔ |‘1| < |‘2|.

(List[?]; <pref) is a WFS, where
‘ <pref ‘

′ ⇔ ∃� ∈ List[?]: � 6= [] ∧ ‘′ = ‘@�.

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 4 / 16

Product and Lexicographic Well Founded Relations

Let (E1;≺1); (E2;≺2); : : : ; (En;≺n) be n WFS’s.

Product Well Founded Relation ≺×⊆ (E1 × · · · × En)2:

(e1; : : : ; en) ≺× (e′1; : : : ; e
′
n) ⇐⇒ ∀i ∈ {1; : : : ; n}: ei ≺i e′i

Lexicographic Well Founded Relation ≺`⊆ (E1 × · · · × En)2:

(e1; : : : ; en) ≺` (e′1; : : : ; e
′
n) ⇐⇒

∃i ∈ {1; : : : ; n}:
�
ei ≺i e′i ∧ (∀j < i: ej = e′j)

�

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 5 / 16

Ranking functions

Let X = {x1; : : : ; xn} be the set of program variables.

Consider a while loop: while C do S.

Let � be an invariant of the loop, i.e.,

∀�; �′: (� |= � ∧ C and � S−→�′)⇒ �′ |= �

Ranking function of the loop: � : Dn → E such that

∀�; �′: (� |= � ∧ C and � S−→�′)⇒ �(�) ≺ �(�′)

where (E;≺) is a well founded set.

Termination:
The while loop terminates if S is a terminating statement,
and the loop has a ranking function.

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 6 / 16

Hoare logic: Proving total correctness

Formulas of the form of the form:

{|�|} S {| |}

Formal Semantics:

{|�|} S {| |} iff ∀�: (� |= �⇒ ∃�′: (� S−→�′ ∧ �′ |=))

Intuitive meaning:

Starting from any state satisfying �, the execution of S
terminates and leads to a state satisfying .

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 7 / 16

Rules for total correctness

Same rules as for partial correctness, except the case of while loops.

Total Iteration Rule:

� : Dn → E (E;≺) is a WFS {|� ∧ C ∧ � = e |} S {|� ∧ � ≺ e |}
{|� |} while C do S {|� ∧ ¬C |}

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 8 / 16

When does it fail

i; n; e : Nat ;
while i 6= n do

skip ;

Prove:

{| i 6= n ∧ n− i = e |}
skip

{| n− i < e |}

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 9 / 16

When does it fail

n; i; e : Nat ;
i := 0 ;
while i 6= n do

i := i + 1

Prove:

{| i 6= n ∧ n− i = e |}
i := i + 1
{| n− i < e |}

By assignment:

{| n− (i + 1) < e |}
i := i + 1 ;
{| n− i < e |}

Does i 6= n ∧ n− i = e =⇒ n− (i + 1) < e ? No, need i < n
M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 10 / 16

Termination proof: Example

f : Nat ;

ifact (n : Nat) =
i : Nat ; e : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

i := i + 1 ;
f := i ∗ f

Prove:

{|� ∧ i 6= n ∧ n− i = e |}
i := i + 1; f := i ∗ f
{|� ∧ n− i < e |}

for some supporting invariant �.

� = true ?

We must use the fact that i ≤ n.

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 11 / 16

Termination proof: Example (cont.)

Prove:

{| i ≤ n ∧ i 6= n ∧ n− i = e |}
i := i + 1; f := i ∗ f
{| i ≤ n ∧ n− i < e |}

Deduce:

{| i ≤ n |}
while i 6= n do {i := i + 1; f := i ∗ f}

{| i ≤ n ∧ i = n |}

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 12 / 16

Termination proof: Example (cont.)

Assignment + Sequential composition rules:

{| i + 1 ≤ n ∧ n− i− 1 < e |}
i := i + 1 ;

{| i ≤ n ∧ n− i < e |}
f := i ∗ f

{| i ≤ n ∧ n− i < e |}
(i ≤ n ∧ i 6= n)⇒ i + 1 ≤ n

i < n ∧ n− i = e⇒ 0 < e

n− i = e ∧ 0 < e⇒ n− i− 1 < e

Implication rule:

{| i ≤ n ∧ i 6= n ∧ n− i = e |}
i := i + 1; f := i ∗ f
{| i ≤ n ∧ n− i < e |}

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 13 / 16

Total correctness proof
f : Nat ;

ifact (n : Nat) =
i : Nat ; e : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

i := i + 1 ;
f := i ∗ f

Prove:

{| f = fact(i) ∧ 0 ≤ i ≤ n ∧ i 6= n ∧ n− i = e |}
i := i + 1; f := i ∗ f

{| f = fact(i) ∧ 0 ≤ i ≤ n ∧ n− i < e |}
Deduce:

{| f = fact(i) ∧ 0 ≤ i ≤ n |}
while (i 6= n) do {i := i + 1; f := i ∗ f}
{| f = fact(i) ∧ 0 ≤ i ≤ n ∧ i = n |}

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 14 / 16

A more complex example

x; y : Nat ;
while x > 0 do

if even(y) then

x := x− 1 ;
y := y + 3

else

y := y − 1

(x = 4; y = 4)
x :=x−1;y :=y+3−−−−−−−−−−→(x = 3; y = 7)

y :=y−1−−−−−→(x = 3; y = 6)

(x = 3; y = 6)
x :=x−1;y :=y+3−−−−−−−−−−→(x = 2; y = 9)

y :=y−1−−−−−→(x = 2; y = 8)

(x = 2; y = 8)
x :=x−1;y :=y+3−−−−−−−−−−→(x = 1; y = 11)

y :=y−1−−−−−→(x = 1; y = 10)

(x = 1; y = 10)
x :=x−1;y :=y+3−−−−−−−−−−→(x = 0; y = 13)

y :=y−1−−−−−→(x = 0; y = 12)

We need to consider the lexicographic order over pairs of integers.

Well founded set: (Nat × Nat; <`)

Ranking function: �(x ; y) = (x ; y)

M. Sozeau (Inria & UP7) L5: Total Correctness October 2014 15 / 16

Summary

Total correctness = Partial correctness + Termination.

Partial correctness ensures that the programs provides the expected
results if it terminates.

Proving termination needs reasoning about “well-foundedness” of
computations.

It amounts in finding ranking functions for while loops mapping states
to elements of well-founded sets.

