
1

David Lesens

Wednesday, 06 October 2010

Synchronous programming

Critical Real Time Embedded Software

06/10/2010 p2 Master 2 – Critical System – Synchronous programming – David LESENS

Synchronous programming
�Eugene Asarin
�Mehdi Dogguy

�David Lesens



2

06/10/2010 p3 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �
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Where can we find software?
�Windows, Linux
�PowerPoint

�Latex
�Compilers
�Mathematical software (e.g. computation of π)
�Mobile phone

�Space
�Nuclear plant
�Airplane
�…

Software is everywhere…

Software is everywhere…Are all these pieces ofsoftware the same?
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The software is part of the system
We can only “buy” the system

The software has its own objective
We can “buy” the software

What is embedded software?
�Windows, Linux
�PowerPoint

�Latex
�Compilers
�Mathematical software (e.g. computation of π)
�Mobile phone

�Space launcher
�Nuclear plant
�Airplane
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Compute the first 10,000 digits of Pi
� pi=3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 

29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 
48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 
70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 
47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 
62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242 
45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 619
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Real time?
�Transformational systems

� Inputs available on execution start

� Outputs delivered on execution end

� Interactive systems
� React to their environment

� To their own speed

�Reactive systems
� React to their environment
� To a speed imposed by the environment

e.g. Mathematical 
computation

e.g. Windows,
Powerpoint

e.g. Control /
Command of a
spacecraft
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Critical? What does it mean?
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Critical? What does it mean?
Intuitively, a critical system is a system which failure 

can have severe impacts

�Nuclear
�Aeronautic
�Automotive
�Railway

�Space
�…
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Software criticality levels

Standards define precisely software criticality levels:

For instance:
�DO178B and DO178C for airborne systems
�ECSS for space systems

� European Committee for Space Standardization
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Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Minor or Negligible consequences

D

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Major consequences

C

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Critical consequences

B

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Catastrophic consequences

A

Definition
Software 
criticality 
category
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Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Minor or Negligible consequences

DD

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Major consequences

CC

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Critical consequences

BB

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Catastrophic consequences

AA

Definition
Software 
criticality 
category
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Software criticality categories ECSS-Q-80C
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DD
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Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Minor or Negligible consequences

DD

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Major consequences

CC

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Critical consequences

BB

Software that if not executed, or if not correctly executed, or 
whose anomalous behaviour could cause or contribute to a 
system failure resulting in: Catastrophic consequences

AA

Definition
Software 
criticality 
category
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ECSS-Q-40B

less than minor injury, disability, occupational illness, or less 
than minor system or environmental damage

Negligible 
hazards

minor injury, minor disability, minor occupational illness, or 
minor system or environmental damage

Marginal 
hazards

i) temporarily disabling but not life-threatening injury, or 
temporary occupational illness;

ii) major damage to flight systems or loss or major damage to 
ground facilities;
iii) major damage to public or private property; or

iv) major detrimental environmental effects

Critical 
hazards

i) loss of life, life-threatening or permanently disabling injury or 
occupational illness, loss of an element of an interfacing 
manned flight system;
ii) loss of launch site facilities or loss of system;

iii) severe detrimental environmental effects.

Catastrophic 
hazards

ConsequenceSeverity
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ECSS-Q-40B

less than minor injury, disability, occupational illness, or less 
than minor system or environmental damage

Negligible 
hazards

minor injury, minor disability, minor occupational illness, or 
minor system or environmental damage

Marginal 
hazards

i) temporarily disabling but not life-threatening injury, or 
temporary occupational illness;

ii) major damage to flight systems or loss or major damage to 
ground facilities;
iii) major damage to public or private property; or

iv) major detrimental environmental effects

Critical 
hazards

i) loss of life, life-threatening or permanently disabling injury or 
occupational illness, loss of an element of an interfacing 
manned flight system;
ii) loss of launch site facilities or loss of system;

iii) severe detrimental environmental effects.

Catastrophic 
hazards

ConsequenceSeverity
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DO178B differs lightly from the ECSS

Failure conditions which do not affect the operational capability of the aircraft or 
increase crew workload

No Effect

Failure conditions which would not significantly reduce aircraft safety, and which 
would involve crew actions that are well within their capabilities. Minor failure 
conditions may include, for example, a slight reduction in safety margins or 
functional capabilities, a slight

Minor

Failure conditions which would reduce the capability of the aircraft or the ability of 
the crew to cope with adverse operating conditions to the extent that there would 
be, for example, a significant reduction in safety margins or functional capabilities, a 
significant increase in crew workload or in conditions impairing crew efficiency, or 
discomfort to occupants, possibly including injuries

Major

Failure conditions which would reduce the capability of the aircraft or the ability of 
the crew to cope with adverse operating conditions to the extent that there would 
be:
(1) a large reduction in safety margins or functional capabilities,
(2) physical distress or higher workload such that the flight crew could not be relied 
on to perform their tasks accurately or completely, or
(3) adverse effects on occupants including serious or potentially fatal injuries to a 
small number of those occupants

Hazardous / 
Severe-Major

Failure conditions which would prevent continued safe flight and landingCatastrophic

ConsequenceSeverity
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Vocabulary
�Security

� is the degree of protection against danger, loss, and criminals.

�Reliability
� is the ability of a person or system to perform and maintain its

functions in routine circumstances, as well as hostile or 
unexpected circumstances. 

�Safety
� is the state of being "safe" (from French sauf), the condition of 

being protected against […] consequences of failure, damage, 
error, accidents, harm or any other event which could be 
considered non-desirable. It can include protection of people or 
of possessions. 

Wikipedia
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Example 1: The First “Computer Bug”
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Example 2: The Patriot Missile Failure

On February 25, 1991, during the Gulf War, an American Patriot 
Missile battery in Dharan, Saudi Arabia, failed to track and 
intercept an incoming Iraqi Scud missile. The Scud struck an 
American Army barracks, killing 28 soldiers and injuring around 
100 other people.   A report of the General Accounting office, 
GAO/IMTEC-92-26, entitled Patriot Missile Defense: Software 
Problem Led to System Failure at Dhahran, Saudi Arabia
reported on the cause of the failure. It turns out that the cause was 
an inaccurate calculation of the timesince boot due to computer 
arithmetic errors. 
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Failure in space

Trident Sea launch
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Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �
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NASA's Climate Orbiter was lost September 23, 1999,
due to a software bug

One engineering team used metric units
while another used English units
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Why is System (to Software) Engineering
complicated?

Mission
management

Thermal control

Power
management

Propulsion
Solar
wings

Software
development
Software
development

Spacecraft designSpacecraft design

Communication
Flight
control
Flight
control
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System     
requirements

System  
design

Software  
design

Software   
requirements

Software   
development

Unitary
testing

Software
integration

testing

Software
validation

System
integration

System
qualification

Verification with model driven engineering

Automatic
code generation

Early
detection
of errors

06/10/2010 p34 Master 2 – Critical System – Synchronous programming – David LESENS

Formal Model Driven Engineering shall 
allow
�An early verification of the specification

via a strong and intuitive semantic ensuring
� Consistency

� Completeness

� Non ambiguity

�A behavioural validation within a simulation 
environment

�
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Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �
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There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to make
it so complicated that there are no
obvious deficiencies.
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Formal semantics of programming 
languages

Wikipedia

In theoretical computer science, formal 
semantics is the field concerned with the 
rigorous mathematical study of the 
meaning of programming languages and 
models of computation
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Statement groups
� In C, C++, Java

� In Ada

if ( light == red );
{

Cancel_lift_off();
}

if  light = red then;
Cancel_lift_off;

end if;

Legal statement
No warning

Illegal statement
No compilation

The call to
Cancel_lift_off
is always executed
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Named notation
� In C, C++, Java

� In Ada

struct date {
int day, month, year;

};

type Date is
record
Day, Month, Year : Integer;

end record;
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Using distinct types
� In Ada
type Goods is new Integer;
type Bads is new Integer;
badcount, b_limit : Goods
goodcount, g_limit: Bads
…
badcount := badcount+1;
…
if  badcount = b_limit then
…
goodcount := goodcount+1;
…
if goodcount = b_limit then
…

Illegal
Bad typing

Strong typing is a
good rule of
critical software
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Formal languages
�Programming languages are more or less formal

� …

� Ada is more formal than Java

� Java is more formal than C++
� C++ is more formal than C

� C is more formal than Matlab

� …

The risk of errors is less important with a formal 
language
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Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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Need of deterministic algorithm
� In computer science, a deterministic algorithm is an 

algorithm which, in informal terms, behaves 
predictably

�Given a particular input, it will always produce the 
same output, and the underlying machine will 
always pass through the same sequence of states 

Wikipedia
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Determinism and ECSS
ECSSECSS--QQ--80C80C
�6.2.3 Handling of critical software

�6.2.3.2 The supplier shall define and apply 
measures to assure the dependability and safety of 
critical software. These measures can include:

� …

� prohibiting the use of language commands and features that 
are unpredictable;

� use of formal design language for formal proof ;

Wikipedia
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Synchronous languages
Semantics = synchronous hypothesis
�Existence of a global clock

� Software cyclically activated

� Inputs read at the cycle beginning

� Outputs delivered at cycle end

(read / write forbidden during the cycle)

�The cycle execution duration shall theoretically be null
� No cycle overflow

�Mono-tasking

� Ensures the determinism
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Asynchronous versus synchronous
Start of an

execution cycle
End of an

execution cycle

I OOI I

I O

Asynchronous
system

Synchronous
system

Outputs can be
emitted at any time

Inputs can be 
received at any time

Inputs shall be 
available at
cycle start

Outputs are
emitted

at cycle end
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p54 Master 2 – Critical System – Synchronous programming – David LESENS

SCADE
“Safety Critical Application Development Environment”

� A textual language: Lustre
� Formal language for reactive synchronous system

� A graphical language
� Semantics equivalence SCADE ���� Lustre

� Adapted to data flow and automata

� A software toolbox
� Graphical editor, simulator, proof tool
� Automatic documentation and certified code generation

� Synchronous approach
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SCADE
editor

SCADESCADE
editoreditor

Documentation
generator

Documentation
generator

Qualified
code generator

Qualified
code generator

Syntax &
Semantics

checker

Syntax &
Semantics

checker

AdaAdaCC

SysMLSysML

Model Test
Coverage

Model Test
Coverage

InteractiveInteractive

BatchBatch

Formal
proof

Formal
proof

Traceability
tool

Traceability
tool

SimulatorSimulator
GatewayGateway

SimulinkSimulink
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Time in Scade
� Global clock (known by all processes) 

� Time = discrete sequence of tick t0, t1, t2, etc.

� At each tick ti a cycle is running

� Variable = flow which takes at each tick a unique 
value

Example: integer variable x

5133285x

t5t4t3t2t1t0
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Operators
�An operator acts on flows of values (and not on 

values) 

Example
� Operator « + »: intn x intn � intn

5133285x

1026641610x + x

t5t4t3t2t1t0
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Temporal operators
�The “PRE” operator takes as input a data flow (i.e. a 

variable) and returns its value at the previous tick.

At initial tick, its value is undefined. 
�The “�” operator takes as input an initialisation

value and a data flow of the same type. It returns an 
identical data flow, except for the initial value.
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133285nullPRE x

51332899 -> x

5133285x

13328599 -> PRE x

t5t4t3t2t1t0

Example
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13328599 -> PRE x

5133285x

285999FBY(x,3,9)

t5t4t3t2t1t0

“Follow by” operator
FBY( x, n, init ) = init � ( PRE ( PRE … x ) )

n times
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1

A

1

B

1

C

X

Y

Z

T

1

D

L

L M

U

VV

Inputs
on the left Outputs

on the right

Local
variables

Data flows

Procedure call

Imported
operator

SCADE at a glance: Data Flow
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1

B
false

1

C

1

A

X

YY

Textual versus graphical
( x, y ) = A();

B( x, y );

C( y )
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MOD

I1

I2

I3

REAL

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

Basic operations (1/2)

I1

I2

O1

O2

O3

O4

O5

O6

Less

Less or equal

Greater or equal

Greater

Different

Equal

Addition

Subtraction

Multiplication

Division

Integer division

Modulo

Unary minus
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“Mutual exclusion” operator

n times

0111

0011

0101

1001

0110

1010

1100

1000

#(e1, e2, e3)e3e2e1

Returns true 
if at most one of its 
inputs is true

#: bool x bool x … x bool� bool
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PRE

FBY

1

O1

O2

FBY

2

PREPRE

O3

O4

I

D1

D1

D1

D1

I

I

I

D2

Delays

Generally
not used

Input

initial value

Delay

Output



34

06/10/2010 p67 Master 2 – Critical System – Synchronous programming – David LESENS

yx

1

f

Node and function
y = f( x )

Function and nodes are represented by a rectangle
� A node has an internal state

� A function has no internal state

Input parameters 
on the left

Input parameters 
on the left

Output parameters 
on the right

Output parameters 
on the right
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Imported function / node

� Imported function

� Imported node

extern void C_reset(
outC_C *outC );

extern void C(
bool Y, 
outC_C *outC );

extern void C_reset(
outC_C *outC );

extern void C(
bool Y, 
outC_C *outC );

extern void C(
bool Y );

extern void C(
bool Y );

Context to be defined by the developerContext to be defined by the developer
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Data structure

T_
DT
G_
dat
a

Xp
Xm
Yp
Ym

DTG_Data

T_
DT
G_
dat
a

Xp
Xm
Yp

Ym

DTG_Data

Xp := DTG_data.Xp
Xm := DTG_data.Xm
Yp := DTG_data.Yp
Ym := DTG_data.Ym

DTG_data.Xp := Xp
DTG_data.Xm := Xm
DTG_data.Yp := Yp
DTG_data.Ym := Ym
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Variables representation

Local_v ariable

Local_v ariable

Output

Input

Output

Local_v ariable

Local_v ariable

Input

Local_v ariable

Local_v ariable

Output

Input

Output

Local_v ariable

Local_v ariable

Input
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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BrowserBrowser

Main window
(graph)

Main window
(graph)

MessagesMessages
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Creating a new project
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BrowserBrowser

Main window
(graph)

Main window
(graph)

MessagesMessages
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Packages

�Definitions of
� Scade operators

� Imported operators

� Constants
� Types

� Sensors

� Packages

� Inside or outside
a package
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Management of types (1/3)
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Management of types (2/3)
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Management of types (3/3)
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Integers and reals
� Integers

� Binary 0b01001

� Octal 0563

� Decimal 9637
� Hexadecimal 0xAF6C

�Encoding
� short, int, long

� Float, double
Shall be defined
by the user
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Defining a constant
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Changing an object properties
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Keyword list
�Scade keywords

� abstract, activate, and, assume, automaton, bool, case, char, clock, const, 
default, div, do, else, elsif, emit, end, enum, every, false, fby, final, flatten, 
fold, foldi, foldw, foldwi, function, guarantee, group, if, imported, initial, int, 
is, last, let, make, map, mapfold, mapi, mapw, mapwi, match, merge, mod, 
node, not, numeric, of, onreset, open, or, package, parameter, pre, 
private, probe, public, real, restart, resume, returns, reverse, sensor, sig, 
specialize, state, synchro, tel, then, times, transpose, true, type, unless, 
until, var, when, where, with, xor

�+ Targeted programming language keywords
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Quick check
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Display types / variable names / …
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Generation of documentation
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Report customization
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Code generation customization



45

06/10/2010 p89 Master 2 – Critical System – Synchronous programming – David LESENS

File management

Scade6Training.xscade 
ImportedOperator.xscade
OutsidePackageOperator.xscade
ActivationPackage.xscade
ArrayPackage.xscade
AutomatonPackage.xscade
Cours.xscade
Genericity.xscade
ProbePackage.xscade
Proof.xscade
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Documentation
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p92 Master 2 – Critical System – Synchronous programming – David LESENS

“IF” operator
x = if b then y else z

If “b” is true, “x” takes the value “y”,

else, “x” takes the value “z”

Note:
Does not mean

If “b” is true, execute “y”,

else, execute “z”
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Activation conditions
�Activation condition

� Condition true = Block activated

� Condition false = Previous outputs used

(was “condact” in Scade 5)
or Default values

� Init values before first use

�Restart condition
� Condition true = Internal memory reset

5

Condition

Activ ateOutput

1

Counter
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Activation: Example (2/3)
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BOOLEAN_ACTIVATED::B/Activate/: true 

BOOLEAN_ACTIVATED::B/Output_default_initial_value/: 20 

BOOLEAN_ACTIVATED::B/Output_default_value/: 20 

0 2000 4000

if (Activate) {
Output_default_initial_value = A();
Output_default_value = A();

} else {
if (init) Output_default_initial_value = 5; }
Output_default_value = 5;

init = false;

if (Activate) {
Output_default_initial_value = A();
Output_default_value = A();

} else {
if (init) Output_default_initial_value = 5; }
Output_default_value = 5;

init = false;

Last computed valuesLast computed values

Default valueDefault value

Introduce an
internal state

Introduce an
internal state
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A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / C o n d i t i o n / :  f a l s e  

A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / A c t i v a t e O u t p u t / :  1 0  

A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / R e s t a r t O u t p u t / :  1 1  

Condition

Activation

Restart

Previous valuePrevious value

5

Condition

Activ ateOutput

1

Counter

Condition

RestartOutput

4

Counter

Computed valueComputed value

Re-initializationRe-initialization

1

0

PRE Output

Activation and restart

Default valueDefault value

Activation
/ restart

condition

Activation
/ restart

condition
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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STATE1_3

ML

1

D

STATE1_2

STATE1_1

<SM1>

S4

STATE2_2

STATE2_1_4

STATE2_1_3

<SM4>

3 S

STATE2_1_2

S2

STATE2_1_1

<SM3>

STATE2_1

1 S

INIT2

<SM2>

 last 'Y  - 1 Y

STATE5_2

 last 'Y  + 1 Y

STATE5_1

<SM6>

STATE5_1

0 Y

INIT3

<SM5>

1 X 1 Y = 2

1

5 times true

1  emit 'SYNCHRO;

1

 'SYNCHRO Z = 4.2;

2

Y = (-1)

1

L > 2 and Y < (-4)

*1

X

1

X

1

Y > 2

1

Y < (-4)

SCADE at a glance: Automaton
Parallel states

Initial state Guard

Action
times

History

Final
state Synchro-

nization

Strong
transition

Weak
transition
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Data flow and automata
�A node is composed of

� Equations (data-flow)

� Automata (event driven)

�An automaton is composed of
� States

� Transitions

�A state is composed of
� Equations

� Automata

3

cmd

step3

CL

2

Counter

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

CL 
= 5

1

CL 
= 3

1
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Principles of Automata

�Semantics equivalence
� There exists a data-flow model semantically equivalent to any 

automaton

�Automaton scheduling
� At most one transition fired per cycle

� Exactly one active state per cycle

(except then parallel states are defined)
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States
�A state can be

�
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Automaton simulation

Active stateActive state

WatchWatchGraphGraph
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Transitions
�A transition can

� have a weak pre-emption

� have a strong pre-emption

� be synchronized

� It can have
� A guard
� An action

� It has a priority
� It can be with or without a history
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Graphical transitions

State7

State6

State5

State4

State3

State2

State1

true

1

true

1

1

* true

1

*
true

1

*

1

Strong without
history

Strong without
history

Weak without
history

Weak without
history

Synchronized
without history

Synchronized
without history

Strong with
history

Strong with
history

Weak with
history

Weak with
history

Synchronized
with history

Synchronized
with history
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Strong and weak transitions
�Strong transition

� The transition is triggered before the state execution

� The guard can not depend on the current value of a data

�Weak transition
(or “weak delayed”)

� The state is executed before the transition triggering
� The guard can depend on the current value of a data
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Strong and weak transition Strong transition

Weak transition
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 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

Strong transition
Example (1/2)

44444321000count strong

44443210000count weak

Tstop

Tstart

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

Weak transition
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Example (2/2)

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

1 last 
'CL = 5

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

1CL = 5

The behaviours of the two following models are equivalent

Previous valuePrevious value
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Synchronized transition
�A synchronized transition

� Has no guard

� Is triggered as soon as all nested automata reach a final state
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�Start1 received
o Still in protection 
state

�Start2 received
o Final states reached

�Transition inactive 
triggered

Example
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Transition history
�Transition without history

� The state resumes its execution

� The memories are reset

�Transition with history
� The state resumes its execution

� The memories are not reset

�Two types of memories
� PRE : local to the state
� LAST : common to the node
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Transition with history

Restart

Resume
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Shared memory

�Data flow point of view
� Access to the last value of a flow in its scope

� “pre expression ”

�Mode automata point of view
� Access to values computed in other states

� “last ‘x”

(“x” is a named flow, not an expression
� utilization of ‘)
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A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / s t a r t / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / s t o p / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / c o u n t e r / :  1 2  

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / s t a r t / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / s t o p / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / c o u n t e r / :  1 2  

 last 'count

1

0

count

activ e

 last 'count

count0

inactiv e

*

1

start *

1

stop

pre count

1

0

count

activ e

pre count

count0

inactiv e

*

1

start *

1

stop

start

stop

start

stop

PRE memory local to  the statePRE memory local to  the state

LAST
memory
shared

between
the states

LAST
memory
shared

between
the states

Internal 
memory
not reset

Internal 
memory
not reset

With historyWith history
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Default actions in state

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

AutomatonPackage::AutomatonStrongTransition/start/: false 

AutomatonPackage::AutomatonStrongTransition/stop/: false 

AutomatonPackage::AutomatonStrongTransition/counter/: 22 

Initial value
(replaces “->”)

Initial value
(replaces “->”)

By default the variable
keeps its previous value

By default the variable
keeps its previous value
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5last

last 'count - 1default
intcount

PropertiesTypeName

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

AutomatonPackage::AutomatonStrongTransition/start/: false 

AutomatonPackage::AutomatonStrongTransition/stop/: false 

AutomatonPackage::AutomatonStrongTransition/counter/: 6 

Modifying the default action

Modification of
the default behaviour

Modification of
the default behaviour

Generated documentation
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Signals
�A signal can be

� Present � true

� Absent � false

�A signal can not be
� An input / output

�≠ Boolean value
� A Boolean value keeps

its previous value then
non updated in a state

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 1/ : f a ls e  

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 2 / : f a ls e  

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 3 / : t ru e  

0

S1

S2

S3

S3

State3

S2

State2

S1

State1

<SM1>

1
next

1 next
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Composition and communication

�A signal can be
� Emitted in a state

� Emitted on a transition

�A transition can be
triggered by a
signal
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Factor

�A factor specifies on many time a condition must be 
true

� In a data flow view

� In a guard (automaton)

AutomatonPackage::AutomatonFactor/arg/: true 

AutomatonPackage::AutomatonFactor/DataFlowTimesOut/: false 

AutomatonPackage::AutomatonFactor/AutomatonTimesOut/: true 

DataFlowTimesOutarg

5

true

AutomatonTimesOut

State2

f alse

AutomatonTimesOut

State1

<SM1>

1
5 times arg

arg

DataFlow

Automaton
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true

Step_4

Step4

true

Step_3

Step3

true

Step_2

Step2

true

Step_1

Step1

1

5 times true

1

DURATION times true

1

10 times true

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 1 / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 2 / :  f a l s e  

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 3 / :  f a l s e  

Time-out with factor

5

10

20

( duration = 20 )

Step 1

Step 2

Step 3
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Fork

true

S4

State4

true

S3

State3

true

S2

State2

true

S1

State1

1trigger

1

v alue 
= 1

2

v alue 
= 2

3

Common
guard

Common
guard

Specific
guard

Specific
guard

PriorityPriority
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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Arrays definition
�Restrictions

� Static size

� First element = index 0

�Definitions
� type VECTOR = real ^ 4 ;

� type MATRIX_2_3 = real ^ 3 ^ 2 ;
� 2 lines, 3 columns
� typedef real LINE_3[3];

� typedef LINE_3 MATRIX_2_3 [2];
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Array sizeArray size

Array typeArray type

Type nameType name

Generated code

typedef _real array_2[2];

typedef array_2 array_1[3];

typedef array_1 T_MATRIX_3_2__ArrayPackage;

Generated code

typedef _real array_2[2];

typedef array_2 array_1[3];

typedef array_1 T_MATRIX_3_2__ArrayPackage;

Editing array types
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AssignOf StructureElement

Array 5

[0]

Array access

Array5=[2,4,6,8,10], Index=3
�Dynamic

�Static

�Assignment

Dy namicProjection

index

Array 5 [] 12

StaticProjectionArray 5 [2]

Index = 3 � Output = 8
Index = 10 � Output = 12

Output = 6

newValue = 3�

Output = [3,4,6,8,10]

Default value for index out of rangeDefault value for index out of range
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[5.0, 6.0, 9.0, 1.0]

Vector4

1 2

1 2

Matrix_2_3

Rev erse_Vector4

Vector6

Vector2

2.0
4

Matrix_3_2

0.0

Some operators on arrays

Scalar to VectorScalar to Vector

Data to VectorData to Vector

Slice of a vectorSlice of a vector

Concatenation
of Arrays

Concatenation
of Arrays

Transpose of 
an Array

Transpose of 
an Array

Reverse of 
a Vector

Reverse of 
a Vector

Constructor
Value repetition

Constructor
Value repetition
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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Iterations
�Equivalent to “for” in C

Map / Mapi / Mapw / Mapiw
Fold / Foldi / Foldi / Foldiw
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Map

MapInt5

SecondInt5

FirstInt5

map<<5>>

for (i = 0; i < 5; i++) {
MapInt5[i] = FirstInt5[i] + SecondInt5[i];

}

for (i = 0; i < 5; i++) {
MapInt5[i] = FirstInt5[i] + SecondInt5[i];

}

MAP: Apply the operator successively
on each element of the input vector(s)

element[i] .element’[i]

MAP: Apply the operator successively
on each element of the input vector(s)

element[i] .element’[i]

Size of the input vectorSize of the input vector
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Fold

InputInt

FirstInt5

FoldInt

fold<<5>>
a

FoldInt = InputInt;
for (i = 0; i < 5; i++) {

FoldInt = FoldInt + FirstInt5[i];
}

FoldInt = InputInt;
for (i = 0; i < 5; i++) {

FoldInt = FoldInt + FirstInt5[i];
}

First element of the iterationFirst element of the iteration

FOLD: Apply recursively the operator on input vector
element[i] .element[i+1]

FOLD: Apply recursivelythe operator on input vector
element[i] .element[i+1]
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Mapfold

MapFold1Int = InputInt;
for (i = 0; i < 5; i++) {

add_2_ArrayPackage(MapFold1Int, FirstInt5[i],
&MapFold1Int, &MapFold2Int[i]);

}

MapFold1Int = InputInt;
for (i = 0; i < 5; i++) {

add_2_ArrayPackage(MapFold1Int, FirstInt5[i],
&MapFold1Int, &MapFold2Int[i]);

}

Nodes used with a mapfold iterator should duplicate their output
We obtain both results at the same time

Nodes used with a mapfold iterator should duplicate their output
We obtain both results at the same time

Operator add_2Operator add_2

sum1

sum2Input2

Input1

sum2
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Mapi = Map with iterator as input

MapiInt5
FirstInt5

mapi<<5>>

i

for (i = 0; i < 5; i++) {
MapiInt5[i] = i + FirstInt5[i];

}

for (i = 0; i < 5; i++) {
MapiInt5[i] = i + FirstInt5[i];

}

The index of the iteration 
is the first argument of the node
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Operator addOperator add

Mapw / Foldw = Partial operators

�Capability to stop an iteration on a Boolean 
condition computed by the operator

10

condition

sum

Input2

Input1 The iteration can be stoppedThe iteration can be stopped

As soon as the condition is false, the iteration is toppedAs soon as the condition is false, the iteration is topped
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Mapw = Map partial operator

MapwInt5

MapwExitIndexInt164

add

4

mapw<<5>>

SecondInt5

FirstInt5

ConditionBool

MapwExitIndexInt = 0;
for (i = 0; i < 5; i++) {
if (ConditionBool) {
add(FirstInt5[i], SecondInt5[i], &ConditionBool, &MapwInt5[i]);
MapwExitIndexInt = i + 1;

} else { MapwInt5[i] = 4; } }

MapwExitIndexInt = 0;
for (i = 0; i < 5; i++) {
if (ConditionBool) {
add(FirstInt5[i], SecondInt5[i], &ConditionBool, &MapwInt5[i]);
MapwExitIndexInt = i + 1;

} else { MapwInt5[i] = 4; } }

It is recommended to not use this operator (WCET)

The iteration can be stopped
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Foldwi = Foldi + Foldw

InputInt
FoldwiInt5

FoldwiExitIndexInt

ConditionBool

180

add

foldwi<<5>>

i
a

FoldwiInt5 = InputInt; tmp = ConditionBool;
for (i = 0; i < 5; i++) {
if ( ConditionBool) { break; }
add(i, FoldwiInt5, & ConditionBool, &tmp);
FoldwiInt5 = tmp;

}
FoldwiExitIndexInt = i;

FoldwiInt5 = InputInt; tmp = ConditionBool;
for (i = 0; i < 5; i++) {
if ( ConditionBool) { break; }
add(i, FoldwiInt5, & ConditionBool, &tmp);
FoldwiInt5 = tmp;

}
FoldwiExitIndexInt = i;

The input flow is the iteratorThe input flow is the iterator

The iteration can be stoppedThe iteration can be stopped
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Iteration summary

�Map = Successive application
�Fold = Recursive application

�Mapfold = Map + Fold
�Mapi = Map with iterator as input
�Foldi = Fold with iterator as input
�Mapw = Map partial operator

�Mapwi = Mapi + Mapw
�Foldw = Fold partial operator
�Foldwi = Foldi + Foldw
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Example 1

Without loop

With loop
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Example 2: cross product

Compute
vector norm

Compute cross product

Compute scalar
product
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Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �
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Sensors
�Sensor: Global system input 

commanded_heater

heater

aimed_temperature

temperature

SensorSensor

Input temperature
Output heater

Input temperature
Output heater

extern _int aimed_temperature__ProbePackage;extern _int aimed_temperature__ProbePackage;
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Probes
�Probe: Global system output 

commanded_heater

heater

aimed_temperature

temperature

ProbeProbe

typedef struct {/* context */
_bool heater; /* outputs */
_bool commanded_heater; /* probes */
} C_controller__ProbePackage;

typedef struct {/* context */
_bool heater; /* outputs */
_bool commanded_heater; /* probes */
} C_controller__ProbePackage;
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�Genericity �



75

06/10/2010 p149 Master 2 – Critical System – Synchronous programming – David LESENS

Generic operator definition

Output

Input 'Targ

'Tsquare_out

TypeName

numeric'T

Generic TypeName

GenericSquareGenericSquare

square_outarg

SpecializationSpecialization

2

GenericSquare

1

GenericSquare

squarereal

squareInt

argReal

argInt

Definition of a generic
numeric type

Definition of a generic
numeric type
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Generic operator instantiation

int GenericSquare_int ( int arg ) {
int square_out;
square_out = arg * arg;
return square_out;

}

int GenericSquare_int ( int arg ) {
int square_out;
square_out = arg * arg;
return square_out;

}

real GenericSquare_real ( real arg ) {
real square_out;
square_out = arg * arg;
return square_out;

}

real GenericSquare_real ( real arg ) {
real square_out;
square_out = arg * arg;
return square_out;

}

void Specialization( int argInt; real argReal; 
int squareInt; real squarereal; ) {

*squareReal = GenericSquare_real ( argReal );
*squareInt =  GenericSquare_int ( argInt );
}

void Specialization( int argInt; real argReal; 
int squareInt; real squarereal; ) {

*squareReal = GenericSquare_real ( argReal );
*squareInt =  GenericSquare_int ( argInt );
}
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Definition of parameters

Definition of a generic
size (“parameter”)

Definition of a generic
size (“parameter”)
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Parameter instantiation

REAL_RESULT = 0.0;
for (i = 0; i < 3; i++) {

REAL_RESULT = REAL_RESULT + (*LEFT)[i] * (*RIGHT)[i];
}
return REAL_RESULT;

REAL_RESULT = 0.0;
for (i = 0; i < 3; i++) {

REAL_RESULT = REAL_RESULT + (*LEFT)[i] * (*RIGHT)[i];
}
return REAL_RESULT;
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Semantics verification (1/2)
Semantics of a SCADE model
� Syntax

� Typing verification
� Types compatibility

� Example: Integer ≠ real

� Non uninitialized variables
� Temporal causality

�…
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Temporal causality
SCADE is an equational language
�The evaluation order depends only on data flows

x = y;    
y = z;    

x = y;    
y = z;    
z = x;    

“y = z” evaluated first
“x = y” evaluated secondly

Impossible computation of the evaluation order
“x = y = z = x = …”

Causality problem
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Semantics verification (2/2)
A SCADE model with a correct semantics is:
� Complete

� Consistent
� Implementable
� The good properties of a specification
� “Semantics check” to be systematically performed

But does the software behave as expected?
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Compare the observed behaviour

with the expected behaviour

�Several levels of test
� Unitary / integration / validation / system qualification

� Host / target

� Real equipment / simulator

� “White” box / “Black” box

What is testing?

At code or
model level
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Objectives of unitary tests
� Robustness

� Absence of “runtime error”

�Functional validity
� Comparison with the expected results

� Contractual objectives
� Coverage

� Intuitively satisfactory

� Measurable
� But not a proof of exhaustiveness
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Unitary tests: Coverage

Procedure f(x : in real; y: in real; z : out real)
if (x > 1.0) or (x < -1.0) then

z := y/x;
else

z := y;
if z < 2.0 then

z = 2.0;

Procedure f(x : in real; y: in real; z : out real)
if (x > 1.0) or (x < -1.0) then

z := y/x;
else

z := y;
if z < 2.0 then

z = 2.0;

Coverage
� branch (x=2.0, y=6.0), (x=-1.0,y=1.0)
� decision + (x=-2, y=3.0)

� path + (x=2.0, y=1.0), (x=0.5,y=2.0)
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Coverage of a SCADE model

+
+0

Counter

inc

PRE

+
+

1

2

= true

= false
Warning

Both branches
are executed

whatever
the value of “inc”
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Integration test

Module A Module B
Validated by   

Unitary Tests   

Validation of interfaces in white box

Module A Module B

Do they work together?

y = f( x1, x2 )    ou
y = f( x2, x1 )
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Limit of the white box approach

�The presence of a spy may modify the real time 
behaviour 

�What happens if the debugger / simulator has … a 
bug?
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Concrete semantics

Possible execution

Test coverage

Tested execution OK

Error
states

Software testing

Program testing can be 
used to show the presence 
of bugs, but never to show 
their absence! 

Edgser W. Dijkstra

Non detected
failure

06/10/2010 p168 Master 2 – Critical System – Synchronous programming – David LESENS

Abstract semantics

Computable and sound 
abstraction

Error
statesConcrete semantics

Non computable

Principle of the proof

In order to reason or 
compute about a 
complex system, some 
information must be lost

Patrick Cousot

Verified
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Abstract semantics

Computable but
incomplete

Concrete semantics Error
states

Warning
False alarms!

Proof limitation
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int a[1000];

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000–i; j++) {

// 0 <= i <= 999

// 0 <= j <= 999

a[i+j] = 0;

}

}

Warning

i

j0

999

999

Example (1)

Non conclusive

Error
states
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i

j0

999

999Safe

int a[1000];

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000–i; j++) {

// 0 <= i and 0 <= j

// i+j <= 999 

a[i+j] = 0;

}

}

Example (2)

Conclusive

Error
states
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Safety et liveness properties
� Safety
“Bad” things never happen

� Liveness
Some thing “good” will eventually happen in the 

future

Abstract semantics

Concrete semantics

State to be
reached

Error
states

The proof
tool of

SCADE
can not
prove

liveness
properties
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Interest of the liveness properties
� “Liveness” property / “timed” property

� Example: if an error is detected, the software shall raise an 
alarm toward the user

� Liveness: the alarm will mandatorily be raised (one day or another)

But when?
� Not acceptable for a critical real time piece of software

� Timed property: the alarm will mandatorily be raised 1 
second after the failure occurence

� Safety property
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Formal proof
� “Mathematical” exhaustive demonstration that a 

piece of software/code satisfied a property

� Rarely the case!

A piece software generally satisfies a property only in 
a correct environment
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The software is part of a complex system

Vehicle

On boardOn board
ComputerComputer

On boardOn board
ComputerComputer

ProcessorProcessor
SoftwareSoftwareEquipmentEquipmentEquipmentEquipmentEquipmentEquipment

BusBus

E
nv

iro
nm

en
t

E
nv

iro
nm

en
t
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Formal proof principles
�Software under validation
�Properties to be satisfied

�Software environment

(□□□□ correct environment) ∧ software ⇒ properties

� Environment in open or close loop
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Expression of properties
Notion of observer
�An observer is a software observing the software 

under validation and returning “true” as long as the 
property is satisfied

� Observation of the software inputs
� Observation of the software outputs

� Idem for the environment properties
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Observers in SCADE

Software
under

validation

Inputs Outputs

Observer
of the

property

ok

Environment

FBY

� Use for testing (oracle)
� Use by SCADE proof tool
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Non deterministic environment (1/2)
The software environment is generally not fully 

deterministic
� Human action

� Failure

� …

� Non deterministic environment

But SCADE is a deterministic language!
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Non deterministic environment (2/2)
The non determinism is modelled by an additional 

input

Example: Failure occurrence

Environment System
Failure
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Assertion
An assertion allows to restrict an environment “too 

much” non deterministic

Example:
� Input “gf” models a gyroscope failure

� Input “tf” models a thruster failureune panne d’une tuyère
� To develop a “one fault tolerant” system

Hypothesis: assert#( gf, tf )
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The End


