Theme 1: Abstract Reasoning

Lecture 3: Inductive Correctness Proofs

Matthieu Sozeau

Inria & Paris Diderot University, Paris 7

October 2014

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 1723

Example: The Append function

o Type:
Append : List[x] x List[x] — List[*]

@ Specification:

Spec_Append ({1, 2,0) =
0] = |ea] + |€2] A
Vi e Nat. (0 < i< |l1]) = L[i] = a]i] N
Vi€ Nat. (0 < i < |ba]) = ([|ta] + i] = £a][i]

@ Implementation:

e = ¢
5.

(a . 61)@52 = (51@52)
@ Correctness:

Vﬁl,ez,f. (51@52 = f) - Spec_Append(fl,Kz,E)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 3723

Implementation vs. Specification

@ Assume we want to define
f : Dom — CoDom
@ Consider an abstract specification
Spec_f(In, Out) C Dom x CoDom

@ Let Impl_f be an implementation of f (e.g., as a recursive function)
@ The implementation /mpl/_f satisfies the specification Spec_f iff:

VIn € Dom. ¥ Out € CoDom. (Impl_f(In) = Out) = Spec_f(In, Out)
Or equivalently:
VIn € Dom = Spec_f(In, Impl_f(In))

@ Correctness is always defined with respect to a given specification!

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 2/23

Correctness proof: Induction

Case 01 = [|: £ =[|@ly = {5.

(1€ =0 +) A
(Vi,0<i<0=.)A
(Vi. 0 < i< |la| = £[0+i] = £2[i])

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 4723

Correctness proof: Induction

Case V1 =a-ly: { =a- (t)0Ql). Let ' = ¢[@/;.
@ Induction hypothesis:
(1€ = 6] + Ie2]) A
(Vi e Nat. (0 <i<|ty])=C[i] =21 A
(Vi e Nat. (0 < i< |la]) = U])¢1] + 1] = ¢2[i])

o Ist point: |[¢| =1+ [¢j@l| =1+ |€1] + |[l2] = |1] + |¢2]
@ We have (by definition of the At operator):
Q /[0] = a = £4[0],
@ Vi.l<i<|l|=tli]=0[i—1]
QVil<i<|=(i=0[i—-1]
@ 2nd point:
VIH2 = Vi (1<i< |f]+1)= 0 — 1] = 4]i — 1]
v (2) = Vil (1< < |6]) =] =]
V(1) = i (0< i < |ta]) =] = afi]
@ 3rd point: left as an exercise.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 5/23

Sorting function: An Implementation

@ Reason about the structure of the input list?

Sort([l) = Il
Sort(a-¥) = lInsert(a, Sort(())

@ We need to insert a in the sorted list corresponding to /.
@ What is the formal specification of Insert?
o Type:
Insert : % x List[x] — List[x]
@ Input-Output relation:

Spec_Insert(a, ¢, 0') =
Ordered(¢) = Ordered(¢') A (Ms(¢') = Sg(a) W Ms(¢))

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 7723

Sorting function: An Implementation

@ Reason about the structure of the input list?

Sort([]) =
Sort(a-l) =

@ How to sort a- ¢ if we can sort ¢ ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 6/ 23

Sorting function: Another Implementation

@ Reason about the structure of the output list?

Sort([]) =
Sort(a-l) =

@ If the output is of the form e - ¢/, what is e ? and how to obtain ¢ ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 8723

Sorting function: Another Implementation

@ Reason about the structure of the output list?

Sort([]) = Il

Sort(a-¢) = 1let (m,lm) = Extract_min(a,f) in m - Sort(¢m)

@ Extract the minimal element m of ¢, and sort the rest of the list /.

October 2014 9/23

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs

Sorting function: Yet Another Implementation

@ Reason again about the structure of the output list?

Sort(ll) =
Sort(a-¥) =

@ Assume that when a is at its place in the output, it has fieft and fright
to its left and right, respectively. How to compute fjeft and fyight ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 11/ 23

Sorting function: Another Implementation

@ Reason about the structure of the output list?

Sort([]) = Il

Sort(a-¢) = 1let (m,lm) = Extract_min(a,?) in m - Sort(¢m)

@ Extract the minimal element m of ¢, and sort the rest of the list /.

@ Specification of Extract_min:
1 Type: Extract_min : % x List[x] — x x List[x]
1 Input-Output relation:

Spec_Extract_min(x, {1, m, {y) =
Is_in(m,x - £1) A
Va € x. Is.in(a,x- 1) = m<a A
Ms(x - £1) = Sg(m) W Ms(£2)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 10/ 23

Sorting function: Yet Another Implementation

@ Reason again about the structure of the output list?

Sort([]) = 1l
Sort(a-f) = 1let ({1,¢2) =split (a,¢) in Sort(¢1)@(a - Sort(¢2))

@ Split £ into 2 lists containing the elements smaller and greater than a.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 12/ 23

Sorting function: Yet Another Implementation Proving correctness of the Recursive Insertion Sort

@ Consider the implementation:

Ins_Sort([]) = []
Ins_Sort(a-¢) = Insert(a, Ins_Sort(Y))

@ Reason again about the structure of the output list?

Sort([]) =]

@ Assume that Insert is correct w.r.t. its specification:
Sort(a-l) = 1let ({1,¢2) = split (a,¥) in Sort(¢1)@(a - Sort({2))

Va € x. V0, ' € List[x] . Insert(a,l) = {' = Spec_Insert(a, (,)
@ Split £ into 2 lists containing the elements smaller and greater than a. where
@ Specification of Split: Spec_Insert(a, £,¢') =

' Type: Split : % x List[x] — List[x] x List[] Ordered(() = (Ordered(') A (Ms(t') = Sg(a) & Ms(¢)))

1 Input-Output relation: @ and prove that:
Spec_Split(a,?, 1, 0) = V0,0 € List[x] . (Ins_Sort(¢) = {') = Spec_Sort(¢, 1)

Ms(€) = Ms(l1) & Ms(l2) A where

Ve € *. ((Is_In(e, £1) = e < a) A (Is_In(e, {2) = a < e)) Spec_Sort(¢, ') =

Vi, j, € Nat. (0 i<ji<l|l|=2[l] <)) A
Ms(€) = Ms((')
October 2014 13 /23 October 2014 14723
Proof Recursive Insertion

Case ¢ = []: Trivial.

Case ¢ = a- {1: We have ¢’ = Ins_Sort({) = Insert(a, Ins_Sort(¢1)). e Type:
o Let ¢ = Ins_Sort((1). Insert : x x List[x] — List[x]
o Induction hypothesis: Ordered(¢}) A Ms({1) = Ms(¢7). @ Input-Output specification:
@ We assume Insert correct w.r.t. its specification: Spec_Insert(a, ¢, ') =
Spec_Insert(a, t;,0') = Ordered(¢) = (Ordered(¢') A (Ms(¢') = Sg(a) & Ms(¢)))

Ordered(¢}) = (Ordered(¢') A (Ms(¢") = Sg(a) & Ms(¢1)))

. . @ Recursive implementation:
@ Since we have Ordered(?}) by Ind. Hyp., then the following holds:

Insert(a,[]) = a-]]
Insert(a,b-¢) = if a<b then a-(b-¥)
e We have Ms(¢) = Sg(a) W Ms({1) = Sg(a) & Ms(¢}) = Ms({'). else b- (Insert(a,l))
@ Then, we obtain Ordered(¢') A Ms(¢) = Ms(¢").

Ordered(¢') A (Ms(¢') = Sg(a) W Ms(¢7))

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 15/ 23 M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 16 / 23

Recursive Insertion: Correctness proof

left as an exercise ...

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014

Well founded relations

@ Let E be a set, and let <C E x E a binary relation over E.

17723

@ The relation < is well founded if it has no infinite descending chains,

i.e., no sequences of the form
€ €1 =
e (E, <) is said to be a well founded set (WFS for short).
@ Thm: < is well founded iff

VFCE. F#£0=(JecF.Ve'eF.€ £e)

October 2014

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs

19723

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs

Correctness of the Quick sort

@ Consider the sorting function:

gsort([]) = 1l
gsort(a-¢) = 1let (f1,f2) =split (a,f) in
gsort(¢1)@(a - gsort(¢2))

@ Prove that:
Ve, 0. (gsort(¢) = {') = Spec_Sort(¢, ')

@ We need to assume that the two recursive calls are correct.

@ What is the proof principle which allows that ?

October 2014

Well founded relations: Examples

o (N, <) is a WFS.
e (Z,<) is not a WFS.

o (R>o,<) is not a WFS.

October 2014

18723

20/ 23

Noetherian Induction Correctness of the Quick sort (cont.)

o Let (E,<) bea WFS, andlet p: D — E.

@ Let <,C D x D be the relation such that:]]]
o Consider the WFS (N, <) and the function p : List[x] — N such that

x =,y < p(x) =< p(y) Ve € List[x]. p(£) = |¢|

@ Induction rule:

@ The rest of the proof is left as an exercise ...
VxeD. (Vy.y <,x= P(y)) = P(x)

Vx € D. P(x)
M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 21/ 23 M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 22/ 23

Conclusion

@ Specifications are abstract definitions of the effect of functions.

@ No implementation details are imposed. Several implementations can
be provided and proved correct w.r.t. an abstract specification.

@ Logic is a natural framework for abstract description of input-output
relations

@ Abstraction allows modular design:

I The user of a function needs only to know its specification. This allows
to separate issues.

1 The implementor must ensure the satisfaction of the specification:
He/she must prove that its implementation satisfies the required
satisfaction.

1 |t is possible to implement a function and prove its correctness w.r.t.
to its specification, assuming that the functions it uses (in external
modules) are correct w.r.t. their own specifications.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 23723

