
1

David Lesens

Wednesday, 06 October 2010

Synchronous programming

Critical Real Time Embedded Software

06/10/2010 p2 Master 2 – Critical System – Synchronous programming – David LESENS

Synchronous programming
�Eugene Asarin
�Mehdi Dogguy

�David Lesens

2

06/10/2010 p3 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �

06/10/2010 p4 Master 2 – Critical System – Synchronous programming – David LESENS

3

06/10/2010 p5 Master 2 – Critical System – Synchronous programming – David LESENS

Where can we find software?
�Windows, Linux
�PowerPoint

�Latex
�Compilers
�Mathematical software (e.g. computation of π)
�Mobile phone

�Space
�Nuclear plant
�Airplane
�…

Software is everywhere…

Software is everywhere…Are all these pieces ofsoftware the same?

4

06/10/2010 p7 Master 2 – Critical System – Synchronous programming – David LESENS

The software is part of the system
We can only “buy” the system

The software has its own objective
We can “buy” the software

What is embedded software?
�Windows, Linux
�PowerPoint

�Latex
�Compilers
�Mathematical software (e.g. computation of π)
�Mobile phone

�Space launcher
�Nuclear plant
�Airplane

06/10/2010 p8 Master 2 – Critical System – Synchronous programming – David LESENS

Compute the first 10,000 digits of Pi
� pi=3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462

29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305
48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943
70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977
47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595
62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242
45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 619

5

06/10/2010 p9 Master 2 – Critical System – Synchronous programming – David LESENS

Real time?
�Transformational systems

� Inputs available on execution start

� Outputs delivered on execution end

� Interactive systems
� React to their environment

� To their own speed

�Reactive systems
� React to their environment
� To a speed imposed by the environment

e.g. Mathematical
computation

e.g. Windows,
Powerpoint

e.g. Control /
Command of a
spacecraft

06/10/2010 p10 Master 2 – Critical System – Synchronous programming – David LESENS

Critical? What does it mean?

6

06/10/2010 p11 Master 2 – Critical System – Synchronous programming – David LESENS

06/10/2010 p12 Master 2 – Critical System – Synchronous programming – David LESENS

Critical? What does it mean?
Intuitively, a critical system is a system which failure

can have severe impacts

�Nuclear
�Aeronautic
�Automotive
�Railway

�Space
�…

7

06/10/2010 p13 Master 2 – Critical System – Synchronous programming – David LESENS

Software criticality levels

Standards define precisely software criticality levels:

For instance:
�DO178B and DO178C for airborne systems
�ECSS for space systems

� European Committee for Space Standardization

06/10/2010 p14 Master 2 – Critical System – Synchronous programming – David LESENS

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Minor or Negligible consequences

D

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

C

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

B

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

A

Definition
Software
criticality
category

8

06/10/2010 p15 Master 2 – Critical System – Synchronous programming – David LESENS

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Minor or Negligible consequences

DD

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

CC

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

BB

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

AA

Definition
Software
criticality
category

06/10/2010 p16 Master 2 – Critical System – Synchronous programming – David LESENS

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Minor or Negligible consequences

DD

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

CC

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

BB

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

AA

Definition
Software
criticality
category

9

06/10/2010 p17 Master 2 – Critical System – Synchronous programming – David LESENS

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Minor or Negligible consequences

DD

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

CC

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

BB

Software that if not executed, or if not correctly executed, or
whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

AA

Definition
Software
criticality
category

06/10/2010 p18 Master 2 – Critical System – Synchronous programming – David LESENS

ECSS-Q-40B

less than minor injury, disability, occupational illness, or less
than minor system or environmental damage

Negligible
hazards

minor injury, minor disability, minor occupational illness, or
minor system or environmental damage

Marginal
hazards

i) temporarily disabling but not life-threatening injury, or
temporary occupational illness;

ii) major damage to flight systems or loss or major damage to
ground facilities;
iii) major damage to public or private property; or

iv) major detrimental environmental effects

Critical
hazards

i) loss of life, life-threatening or permanently disabling injury or
occupational illness, loss of an element of an interfacing
manned flight system;
ii) loss of launch site facilities or loss of system;

iii) severe detrimental environmental effects.

Catastrophic
hazards

ConsequenceSeverity

10

06/10/2010 p19 Master 2 – Critical System – Synchronous programming – David LESENS

ECSS-Q-40B

less than minor injury, disability, occupational illness, or less
than minor system or environmental damage

Negligible
hazards

minor injury, minor disability, minor occupational illness, or
minor system or environmental damage

Marginal
hazards

i) temporarily disabling but not life-threatening injury, or
temporary occupational illness;

ii) major damage to flight systems or loss or major damage to
ground facilities;
iii) major damage to public or private property; or

iv) major detrimental environmental effects

Critical
hazards

i) loss of life, life-threatening or permanently disabling injury or
occupational illness, loss of an element of an interfacing
manned flight system;
ii) loss of launch site facilities or loss of system;

iii) severe detrimental environmental effects.

Catastrophic
hazards

ConsequenceSeverity

06/10/2010 p20 Master 2 – Critical System – Synchronous programming – David LESENS

DO178B differs lightly from the ECSS

Failure conditions which do not affect the operational capability of the aircraft or
increase crew workload

No Effect

Failure conditions which would not significantly reduce aircraft safety, and which
would involve crew actions that are well within their capabilities. Minor failure
conditions may include, for example, a slight reduction in safety margins or
functional capabilities, a slight

Minor

Failure conditions which would reduce the capability of the aircraft or the ability of
the crew to cope with adverse operating conditions to the extent that there would
be, for example, a significant reduction in safety margins or functional capabilities, a
significant increase in crew workload or in conditions impairing crew efficiency, or
discomfort to occupants, possibly including injuries

Major

Failure conditions which would reduce the capability of the aircraft or the ability of
the crew to cope with adverse operating conditions to the extent that there would
be:
(1) a large reduction in safety margins or functional capabilities,
(2) physical distress or higher workload such that the flight crew could not be relied
on to perform their tasks accurately or completely, or
(3) adverse effects on occupants including serious or potentially fatal injuries to a
small number of those occupants

Hazardous /
Severe-Major

Failure conditions which would prevent continued safe flight and landingCatastrophic

ConsequenceSeverity

11

06/10/2010 p21 Master 2 – Critical System – Synchronous programming – David LESENS

Vocabulary
�Security

� is the degree of protection against danger, loss, and criminals.

�Reliability
� is the ability of a person or system to perform and maintain its

functions in routine circumstances, as well as hostile or
unexpected circumstances.

�Safety
� is the state of being "safe" (from French sauf), the condition of

being protected against […] consequences of failure, damage,
error, accidents, harm or any other event which could be
considered non-desirable. It can include protection of people or
of possessions.

Wikipedia

06/10/2010 p22 Master 2 – Critical System – Synchronous programming – David LESENS

12

06/10/2010 p23 Master 2 – Critical System – Synchronous programming – David LESENS

Example 1: The First “Computer Bug”

06/10/2010 p24 Master 2 – Critical System – Synchronous programming – David LESENS

Example 2: The Patriot Missile Failure

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and
intercept an incoming Iraqi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers and injuring around
100 other people. A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia
reported on the cause of the failure. It turns out that the cause was
an inaccurate calculation of the timesince boot due to computer
arithmetic errors.

13

06/10/2010 p25 Master 2 – Critical System – Synchronous programming – David LESENS

Failure in space

Trident Sea launch

06/10/2010 p26 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �

14

06/10/2010 p27 Master 2 – Critical System – Synchronous programming – David LESENS

NASA's Climate Orbiter was lost September 23, 1999,
due to a software bug

One engineering team used metric units
while another used English units

06/10/2010 p28 Master 2 – Critical System – Synchronous programming – David LESENS

Why is System (to Software) Engineering
complicated?

Mission
management

Thermal control

Power
management

Propulsion
Solar
wings

Software
development
Software
development

Spacecraft designSpacecraft design

Communication
Flight
control
Flight
control

15

16

06/10/2010 p31 Master 2 – Critical System – Synchronous programming – David LESENS

17

06/10/2010 p33 Master 2 – Critical System – Synchronous programming – David LESENS

System
requirements

System
design

Software
design

Software
requirements

Software
development

Unitary
testing

Software
integration

testing

Software
validation

System
integration

System
qualification

Verification with model driven engineering

Automatic
code generation

Early
detection
of errors

06/10/2010 p34 Master 2 – Critical System – Synchronous programming – David LESENS

Formal Model Driven Engineering shall
allow
�An early verification of the specification

via a strong and intuitive semantic ensuring
� Consistency

� Completeness

� Non ambiguity

�A behavioural validation within a simulation
environment

�

18

06/10/2010 p35 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �

06/10/2010 p36 Master 2 – Critical System – Synchronous programming – David LESENS

There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to make
it so complicated that there are no
obvious deficiencies.

19

06/10/2010 p37 Master 2 – Critical System – Synchronous programming – David LESENS

Formal semantics of programming
languages

Wikipedia

In theoretical computer science, formal
semantics is the field concerned with the
rigorous mathematical study of the
meaning of programming languages and
models of computation

20

06/10/2010 p39 Master 2 – Critical System – Synchronous programming – David LESENS

Statement groups
� In C, C++, Java

� In Ada

if (light == red);
{

Cancel_lift_off();
}

if light = red then;
Cancel_lift_off;

end if;

Legal statement
No warning

Illegal statement
No compilation

The call to
Cancel_lift_off
is always executed

06/10/2010 p40 Master 2 – Critical System – Synchronous programming – David LESENS

Named notation
� In C, C++, Java

� In Ada

struct date {
int day, month, year;

};

type Date is
record
Day, Month, Year : Integer;

end record;

22

06/10/2010 p43 Master 2 – Critical System – Synchronous programming – David LESENS

Using distinct types
� In Ada
type Goods is new Integer;
type Bads is new Integer;
badcount, b_limit : Goods
goodcount, g_limit: Bads
…
badcount := badcount+1;
…
if badcount = b_limit then
…
goodcount := goodcount+1;
…
if goodcount = b_limit then
…

Illegal
Bad typing

Strong typing is a
good rule of
critical software

06/10/2010 p44 Master 2 – Critical System – Synchronous programming – David LESENS

Formal languages
�Programming languages are more or less formal

� …

� Ada is more formal than Java

� Java is more formal than C++
� C++ is more formal than C

� C is more formal than Matlab

� …

The risk of errors is less important with a formal
language

24

06/10/2010 p47 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Critical real-time embedded software �

�Principles of the approach �

� Introduction �

� Formal semantics �

�SCADE �

�Model validation �

06/10/2010 p48 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

25

06/10/2010 p49 Master 2 – Critical System – Synchronous programming – David LESENS

Need of deterministic algorithm
� In computer science, a deterministic algorithm is an

algorithm which, in informal terms, behaves
predictably

�Given a particular input, it will always produce the
same output, and the underlying machine will
always pass through the same sequence of states

Wikipedia

06/10/2010 p50 Master 2 – Critical System – Synchronous programming – David LESENS

Determinism and ECSS
ECSSECSS--QQ--80C80C
�6.2.3 Handling of critical software

�6.2.3.2 The supplier shall define and apply
measures to assure the dependability and safety of
critical software. These measures can include:

� …

� prohibiting the use of language commands and features that
are unpredictable;

� use of formal design language for formal proof ;

Wikipedia

26

06/10/2010 p51 Master 2 – Critical System – Synchronous programming – David LESENS

Synchronous languages
Semantics = synchronous hypothesis
�Existence of a global clock

� Software cyclically activated

� Inputs read at the cycle beginning

� Outputs delivered at cycle end

(read / write forbidden during the cycle)

�The cycle execution duration shall theoretically be null
� No cycle overflow

�Mono-tasking

� Ensures the determinism

06/10/2010 p52 Master 2 – Critical System – Synchronous programming – David LESENS

Asynchronous versus synchronous
Start of an

execution cycle
End of an

execution cycle

I OOI I

I O

Asynchronous
system

Synchronous
system

Outputs can be
emitted at any time

Inputs can be
received at any time

Inputs shall be
available at
cycle start

Outputs are
emitted

at cycle end

27

06/10/2010 p53 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p54 Master 2 – Critical System – Synchronous programming – David LESENS

SCADE
“Safety Critical Application Development Environment”

� A textual language: Lustre
� Formal language for reactive synchronous system

� A graphical language
� Semantics equivalence SCADE ���� Lustre

� Adapted to data flow and automata

� A software toolbox
� Graphical editor, simulator, proof tool
� Automatic documentation and certified code generation

� Synchronous approach

28

06/10/2010 p55 Master 2 – Critical System – Synchronous programming – David LESENS

SCADE
editor

SCADESCADE
editoreditor

Documentation
generator

Documentation
generator

Qualified
code generator

Qualified
code generator

Syntax &
Semantics

checker

Syntax &
Semantics

checker

AdaAdaCC

SysMLSysML

Model Test
Coverage

Model Test
Coverage

InteractiveInteractive

BatchBatch

Formal
proof

Formal
proof

Traceability
tool

Traceability
tool

SimulatorSimulator
GatewayGateway

SimulinkSimulink

06/10/2010 p56 Master 2 – Critical System – Synchronous programming – David LESENS

Time in Scade
� Global clock (known by all processes)

� Time = discrete sequence of tick t0, t1, t2, etc.

� At each tick ti a cycle is running

� Variable = flow which takes at each tick a unique
value

Example: integer variable x

5133285x

t5t4t3t2t1t0

29

06/10/2010 p57 Master 2 – Critical System – Synchronous programming – David LESENS

Operators
�An operator acts on flows of values (and not on

values)

Example
� Operator « + »: intn x intn � intn

5133285x

1026641610x + x

t5t4t3t2t1t0

06/10/2010 p58 Master 2 – Critical System – Synchronous programming – David LESENS

Temporal operators
�The “PRE” operator takes as input a data flow (i.e. a

variable) and returns its value at the previous tick.

At initial tick, its value is undefined.
�The “�” operator takes as input an initialisation

value and a data flow of the same type. It returns an
identical data flow, except for the initial value.

30

06/10/2010 p59 Master 2 – Critical System – Synchronous programming – David LESENS

133285nullPRE x

51332899 -> x

5133285x

13328599 -> PRE x

t5t4t3t2t1t0

Example

06/10/2010 p60 Master 2 – Critical System – Synchronous programming – David LESENS

13328599 -> PRE x

5133285x

285999FBY(x,3,9)

t5t4t3t2t1t0

“Follow by” operator
FBY(x, n, init) = init � (PRE (PRE … x))

n times

31

06/10/2010 p61 Master 2 – Critical System – Synchronous programming – David LESENS

1

A

1

B

1

C

X

Y

Z

T

1

D

L

L M

U

VV

Inputs
on the left Outputs

on the right

Local
variables

Data flows

Procedure call

Imported
operator

SCADE at a glance: Data Flow

06/10/2010 p62 Master 2 – Critical System – Synchronous programming – David LESENS

1

B
false

1

C

1

A

X

YY

Textual versus graphical
(x, y) = A();

B(x, y);

C(y)

32

06/10/2010 p63 Master 2 – Critical System – Synchronous programming – David LESENS

MOD

I1

I2

I3

REAL

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

Basic operations (1/2)

I1

I2

O1

O2

O3

O4

O5

O6

Less

Less or equal

Greater or equal

Greater

Different

Equal

Addition

Subtraction

Multiplication

Division

Integer division

Modulo

Unary minus

33

06/10/2010 p65 Master 2 – Critical System – Synchronous programming – David LESENS

“Mutual exclusion” operator

n times

0111

0011

0101

1001

0110

1010

1100

1000

#(e1, e2, e3)e3e2e1

Returns true
if at most one of its
inputs is true

#: bool x bool x … x bool� bool

06/10/2010 p66 Master 2 – Critical System – Synchronous programming – David LESENS

PRE

FBY

1

O1

O2

FBY

2

PREPRE

O3

O4

I

D1

D1

D1

D1

I

I

I

D2

Delays

Generally
not used

Input

initial value

Delay

Output

34

06/10/2010 p67 Master 2 – Critical System – Synchronous programming – David LESENS

yx

1

f

Node and function
y = f(x)

Function and nodes are represented by a rectangle
� A node has an internal state

� A function has no internal state

Input parameters
on the left

Input parameters
on the left

Output parameters
on the right

Output parameters
on the right

06/10/2010 p68 Master 2 – Critical System – Synchronous programming – David LESENS

Imported function / node

� Imported function

� Imported node

extern void C_reset(
outC_C *outC);

extern void C(
bool Y,
outC_C *outC);

extern void C_reset(
outC_C *outC);

extern void C(
bool Y,
outC_C *outC);

extern void C(
bool Y);

extern void C(
bool Y);

Context to be defined by the developerContext to be defined by the developer

35

06/10/2010 p69 Master 2 – Critical System – Synchronous programming – David LESENS

Data structure

T_
DT
G_
dat
a

Xp
Xm
Yp
Ym

DTG_Data

T_
DT
G_
dat
a

Xp
Xm
Yp

Ym

DTG_Data

Xp := DTG_data.Xp
Xm := DTG_data.Xm
Yp := DTG_data.Yp
Ym := DTG_data.Ym

DTG_data.Xp := Xp
DTG_data.Xm := Xm
DTG_data.Yp := Yp
DTG_data.Ym := Ym

06/10/2010 p70 Master 2 – Critical System – Synchronous programming – David LESENS

Variables representation

Local_v ariable

Local_v ariable

Output

Input

Output

Local_v ariable

Local_v ariable

Input

Local_v ariable

Local_v ariable

Output

Input

Output

Local_v ariable

Local_v ariable

Input

36

06/10/2010 p71 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p72 Master 2 – Critical System – Synchronous programming – David LESENS

BrowserBrowser

Main window
(graph)

Main window
(graph)

MessagesMessages

37

06/10/2010 p73 Master 2 – Critical System – Synchronous programming – David LESENS

Creating a new project

06/10/2010 p74 Master 2 – Critical System – Synchronous programming – David LESENS

BrowserBrowser

Main window
(graph)

Main window
(graph)

MessagesMessages

38

06/10/2010 p75 Master 2 – Critical System – Synchronous programming – David LESENS

Packages

�Definitions of
� Scade operators

� Imported operators

� Constants
� Types

� Sensors

� Packages

� Inside or outside
a package

06/10/2010 p76 Master 2 – Critical System – Synchronous programming – David LESENS

Management of types (1/3)

39

06/10/2010 p77 Master 2 – Critical System – Synchronous programming – David LESENS

Management of types (2/3)

06/10/2010 p78 Master 2 – Critical System – Synchronous programming – David LESENS

Management of types (3/3)

40

06/10/2010 p79 Master 2 – Critical System – Synchronous programming – David LESENS

Integers and reals
� Integers

� Binary 0b01001

� Octal 0563

� Decimal 9637
� Hexadecimal 0xAF6C

�Encoding
� short, int, long

� Float, double
Shall be defined
by the user

06/10/2010 p80 Master 2 – Critical System – Synchronous programming – David LESENS

Defining a constant

41

06/10/2010 p81 Master 2 – Critical System – Synchronous programming – David LESENS

Changing an object properties

06/10/2010 p82 Master 2 – Critical System – Synchronous programming – David LESENS

Keyword list
�Scade keywords

� abstract, activate, and, assume, automaton, bool, case, char, clock, const,
default, div, do, else, elsif, emit, end, enum, every, false, fby, final, flatten,
fold, foldi, foldw, foldwi, function, guarantee, group, if, imported, initial, int,
is, last, let, make, map, mapfold, mapi, mapw, mapwi, match, merge, mod,
node, not, numeric, of, onreset, open, or, package, parameter, pre,
private, probe, public, real, restart, resume, returns, reverse, sensor, sig,
specialize, state, synchro, tel, then, times, transpose, true, type, unless,
until, var, when, where, with, xor

�+ Targeted programming language keywords

42

06/10/2010 p83 Master 2 – Critical System – Synchronous programming – David LESENS

Quick check

43

06/10/2010 p85 Master 2 – Critical System – Synchronous programming – David LESENS

Display types / variable names / …

06/10/2010 p86 Master 2 – Critical System – Synchronous programming – David LESENS

Generation of documentation

44

06/10/2010 p87 Master 2 – Critical System – Synchronous programming – David LESENS

Report customization

06/10/2010 p88 Master 2 – Critical System – Synchronous programming – David LESENS

Code generation customization

45

06/10/2010 p89 Master 2 – Critical System – Synchronous programming – David LESENS

File management

Scade6Training.xscade
ImportedOperator.xscade
OutsidePackageOperator.xscade
ActivationPackage.xscade
ArrayPackage.xscade
AutomatonPackage.xscade
Cours.xscade
Genericity.xscade
ProbePackage.xscade
Proof.xscade

06/10/2010 p90 Master 2 – Critical System – Synchronous programming – David LESENS

Documentation

46

06/10/2010 p91 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p92 Master 2 – Critical System – Synchronous programming – David LESENS

“IF” operator
x = if b then y else z

If “b” is true, “x” takes the value “y”,

else, “x” takes the value “z”

Note:
Does not mean

If “b” is true, execute “y”,

else, execute “z”

48

06/10/2010 p95 Master 2 – Critical System – Synchronous programming – David LESENS

Activation conditions
�Activation condition

� Condition true = Block activated

� Condition false = Previous outputs used

(was “condact” in Scade 5)
or Default values

� Init values before first use

�Restart condition
� Condition true = Internal memory reset

5

Condition

Activ ateOutput

1

Counter

49

06/10/2010 p97 Master 2 – Critical System – Synchronous programming – David LESENS

Activation: Example (2/3)

06/10/2010 p98 Master 2 – Critical System – Synchronous programming – David LESENS

BOOLEAN_ACTIVATED::B/Activate/: true

BOOLEAN_ACTIVATED::B/Output_default_initial_value/: 20

BOOLEAN_ACTIVATED::B/Output_default_value/: 20

0 2000 4000

if (Activate) {
Output_default_initial_value = A();
Output_default_value = A();

} else {
if (init) Output_default_initial_value = 5; }
Output_default_value = 5;

init = false;

if (Activate) {
Output_default_initial_value = A();
Output_default_value = A();

} else {
if (init) Output_default_initial_value = 5; }
Output_default_value = 5;

init = false;

Last computed valuesLast computed values

Default valueDefault value

Introduce an
internal state

Introduce an
internal state

50

06/10/2010 p99 Master 2 – Critical System – Synchronous programming – David LESENS

A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / C o n d i t i o n / : f a l s e

A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / A c t i v a t e O u t p u t / : 1 0

A c t i v a t i o n P a c k a g e : : A c t i v a t i o n B l o c k / R e s t a r t O u t p u t / : 1 1

Condition

Activation

Restart

Previous valuePrevious value

5

Condition

Activ ateOutput

1

Counter

Condition

RestartOutput

4

Counter

Computed valueComputed value

Re-initializationRe-initialization

1

0

PRE Output

Activation and restart

Default valueDefault value

Activation
/ restart

condition

Activation
/ restart

condition

06/10/2010 p100 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

51

06/10/2010 p101 Master 2 – Critical System – Synchronous programming – David LESENS

STATE1_3

ML

1

D

STATE1_2

STATE1_1

<SM1>

S4

STATE2_2

STATE2_1_4

STATE2_1_3

<SM4>

3 S

STATE2_1_2

S2

STATE2_1_1

<SM3>

STATE2_1

1 S

INIT2

<SM2>

 last 'Y - 1 Y

STATE5_2

 last 'Y + 1 Y

STATE5_1

<SM6>

STATE5_1

0 Y

INIT3

<SM5>

1 X 1 Y = 2

1

5 times true

1 emit 'SYNCHRO;

1

 'SYNCHRO Z = 4.2;

2

Y = (-1)

1

L > 2 and Y < (-4)

*1

X

1

X

1

Y > 2

1

Y < (-4)

SCADE at a glance: Automaton
Parallel states

Initial state Guard

Action
times

History

Final
state Synchro-

nization

Strong
transition

Weak
transition

06/10/2010 p102 Master 2 – Critical System – Synchronous programming – David LESENS

Data flow and automata
�A node is composed of

� Equations (data-flow)

� Automata (event driven)

�An automaton is composed of
� States

� Transitions

�A state is composed of
� Equations

� Automata

3

cmd

step3

CL

2

Counter

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

CL
= 5

1

CL
= 3

1

52

06/10/2010 p103 Master 2 – Critical System – Synchronous programming – David LESENS

Principles of Automata

�Semantics equivalence
� There exists a data-flow model semantically equivalent to any

automaton

�Automaton scheduling
� At most one transition fired per cycle

� Exactly one active state per cycle

(except then parallel states are defined)

06/10/2010 p104 Master 2 – Critical System – Synchronous programming – David LESENS

States
�A state can be

�

53

06/10/2010 p105 Master 2 – Critical System – Synchronous programming – David LESENS

Automaton simulation

Active stateActive state

WatchWatchGraphGraph

06/10/2010 p106 Master 2 – Critical System – Synchronous programming – David LESENS

Transitions
�A transition can

� have a weak pre-emption

� have a strong pre-emption

� be synchronized

� It can have
� A guard
� An action

� It has a priority
� It can be with or without a history

54

06/10/2010 p107 Master 2 – Critical System – Synchronous programming – David LESENS

Graphical transitions

State7

State6

State5

State4

State3

State2

State1

true

1

true

1

1

* true

1

*
true

1

*

1

Strong without
history

Strong without
history

Weak without
history

Weak without
history

Synchronized
without history

Synchronized
without history

Strong with
history

Strong with
history

Weak with
history

Weak with
history

Synchronized
with history

Synchronized
with history

06/10/2010 p108 Master 2 – Critical System – Synchronous programming – David LESENS

Strong and weak transitions
�Strong transition

� The transition is triggered before the state execution

� The guard can not depend on the current value of a data

�Weak transition
(or “weak delayed”)

� The state is executed before the transition triggering
� The guard can depend on the current value of a data

55

06/10/2010 p109 Master 2 – Critical System – Synchronous programming – David LESENS

Strong and weak transition Strong transition

Weak transition

06/10/2010 p110 Master 2 – Critical System – Synchronous programming – David LESENS

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

Strong transition
Example (1/2)

44444321000count strong

44443210000count weak

Tstop

Tstart

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

Weak transition

56

06/10/2010 p111 Master 2 – Critical System – Synchronous programming – David LESENS

Example (2/2)

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

1 last
'CL = 5

2

cmd

step2

CL

1

Counter

1

cmd

step1

<SM1>

1CL = 5

The behaviours of the two following models are equivalent

Previous valuePrevious value

06/10/2010 p112 Master 2 – Critical System – Synchronous programming – David LESENS

Synchronized transition
�A synchronized transition

� Has no guard

� Is triggered as soon as all nested automata reach a final state

57

06/10/2010 p113 Master 2 – Critical System – Synchronous programming – David LESENS

�Start1 received
o Still in protection
state

�Start2 received
o Final states reached

�Transition inactive
triggered

Example

06/10/2010 p114 Master 2 – Critical System – Synchronous programming – David LESENS

Transition history
�Transition without history

� The state resumes its execution

� The memories are reset

�Transition with history
� The state resumes its execution

� The memories are not reset

�Two types of memories
� PRE : local to the state
� LAST : common to the node

58

06/10/2010 p115 Master 2 – Critical System – Synchronous programming – David LESENS

Transition with history

Restart

Resume

06/10/2010 p116 Master 2 – Critical System – Synchronous programming – David LESENS

Shared memory

�Data flow point of view
� Access to the last value of a flow in its scope

� “pre expression ”

�Mode automata point of view
� Access to values computed in other states

� “last ‘x”

(“x” is a named flow, not an expression
� utilization of ‘)

59

06/10/2010 p117 Master 2 – Critical System – Synchronous programming – David LESENS

A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / s t a r t / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / s t o p / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n L a s t H i s t o r y / c o u n t e r / : 1 2

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / s t a r t / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / s t o p / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n P r e H i s t o r y / c o u n t e r / : 1 2

 last 'count

1

0

count

activ e

 last 'count

count0

inactiv e

*

1

start *

1

stop

pre count

1

0

count

activ e

pre count

count0

inactiv e

*

1

start *

1

stop

start

stop

start

stop

PRE memory local to the statePRE memory local to the state

LAST
memory
shared

between
the states

LAST
memory
shared

between
the states

Internal
memory
not reset

Internal
memory
not reset

With historyWith history

06/10/2010 p118 Master 2 – Critical System – Synchronous programming – David LESENS

Default actions in state

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

AutomatonPackage::AutomatonStrongTransition/start/: false

AutomatonPackage::AutomatonStrongTransition/stop/: false

AutomatonPackage::AutomatonStrongTransition/counter/: 22

Initial value
(replaces “->”)

Initial value
(replaces “->”)

By default the variable
keeps its previous value

By default the variable
keeps its previous value

60

06/10/2010 p119 Master 2 – Critical System – Synchronous programming – David LESENS
5last

last 'count - 1default
intcount

PropertiesTypeName

 last 'count

1
count

activ e

inactiv e

*

1

start

*

1

stop

AutomatonPackage::AutomatonStrongTransition/start/: false

AutomatonPackage::AutomatonStrongTransition/stop/: false

AutomatonPackage::AutomatonStrongTransition/counter/: 6

Modifying the default action

Modification of
the default behaviour

Modification of
the default behaviour

Generated documentation

06/10/2010 p120 Master 2 – Critical System – Synchronous programming – David LESENS

Signals
�A signal can be

� Present � true

� Absent � false

�A signal can not be
� An input / output

�≠ Boolean value
� A Boolean value keeps

its previous value then
non updated in a state

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 1/ : f a ls e

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 2 / : f a ls e

A u t o m a t o n P a c k a g e ::A u t o m a t o n S ig n a l/ O u t p u t 3 / : t ru e

0

S1

S2

S3

S3

State3

S2

State2

S1

State1

<SM1>

1
next

1 next

61

06/10/2010 p121 Master 2 – Critical System – Synchronous programming – David LESENS

Composition and communication

�A signal can be
� Emitted in a state

� Emitted on a transition

�A transition can be
triggered by a
signal

06/10/2010 p122 Master 2 – Critical System – Synchronous programming – David LESENS

Factor

�A factor specifies on many time a condition must be
true

� In a data flow view

� In a guard (automaton)

AutomatonPackage::AutomatonFactor/arg/: true

AutomatonPackage::AutomatonFactor/DataFlowTimesOut/: false

AutomatonPackage::AutomatonFactor/AutomatonTimesOut/: true

DataFlowTimesOutarg

5

true

AutomatonTimesOut

State2

f alse

AutomatonTimesOut

State1

<SM1>

1
5 times arg

arg

DataFlow

Automaton

62

06/10/2010 p123 Master 2 – Critical System – Synchronous programming – David LESENS

true

Step_4

Step4

true

Step_3

Step3

true

Step_2

Step2

true

Step_1

Step1

1

5 times true

1

DURATION times true

1

10 times true

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 1 / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 2 / : f a l s e

A u t o m a t o n P a c k a g e : : A u t o m a t o n F a c t o r / S t e p _ 3 / : f a l s e

Time-out with factor

5

10

20

(duration = 20)

Step 1

Step 2

Step 3

06/10/2010 p124 Master 2 – Critical System – Synchronous programming – David LESENS

Fork

true

S4

State4

true

S3

State3

true

S2

State2

true

S1

State1

1trigger

1

v alue
= 1

2

v alue
= 2

3

Common
guard

Common
guard

Specific
guard

Specific
guard

PriorityPriority

63

06/10/2010 p125 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p126 Master 2 – Critical System – Synchronous programming – David LESENS

Arrays definition
�Restrictions

� Static size

� First element = index 0

�Definitions
� type VECTOR = real ^ 4 ;

� type MATRIX_2_3 = real ^ 3 ^ 2 ;
� 2 lines, 3 columns
� typedef real LINE_3[3];

� typedef LINE_3 MATRIX_2_3 [2];

64

06/10/2010 p127 Master 2 – Critical System – Synchronous programming – David LESENS

Array sizeArray size

Array typeArray type

Type nameType name

Generated code

typedef _real array_2[2];

typedef array_2 array_1[3];

typedef array_1 T_MATRIX_3_2__ArrayPackage;

Generated code

typedef _real array_2[2];

typedef array_2 array_1[3];

typedef array_1 T_MATRIX_3_2__ArrayPackage;

Editing array types

06/10/2010 p128 Master 2 – Critical System – Synchronous programming – David LESENSnewValue

AssignOf StructureElement

Array 5

[0]

Array access

Array5=[2,4,6,8,10], Index=3
�Dynamic

�Static

�Assignment

Dy namicProjection

index

Array 5 [] 12

StaticProjectionArray 5 [2]

Index = 3 � Output = 8
Index = 10 � Output = 12

Output = 6

newValue = 3�

Output = [3,4,6,8,10]

Default value for index out of rangeDefault value for index out of range

65

06/10/2010 p129 Master 2 – Critical System – Synchronous programming – David LESENS
[5.0, 6.0, 9.0, 1.0]

Vector4

1 2

1 2

Matrix_2_3

Rev erse_Vector4

Vector6

Vector2

2.0
4

Matrix_3_2

0.0

Some operators on arrays

Scalar to VectorScalar to Vector

Data to VectorData to Vector

Slice of a vectorSlice of a vector

Concatenation
of Arrays

Concatenation
of Arrays

Transpose of
an Array

Transpose of
an Array

Reverse of
a Vector

Reverse of
a Vector

Constructor
Value repetition

Constructor
Value repetition

06/10/2010 p130 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

66

06/10/2010 p131 Master 2 – Critical System – Synchronous programming – David LESENS

Iterations
�Equivalent to “for” in C

Map / Mapi / Mapw / Mapiw
Fold / Foldi / Foldi / Foldiw

06/10/2010 p132 Master 2 – Critical System – Synchronous programming – David LESENS

Map

MapInt5

SecondInt5

FirstInt5

map<<5>>

for (i = 0; i < 5; i++) {
MapInt5[i] = FirstInt5[i] + SecondInt5[i];

}

for (i = 0; i < 5; i++) {
MapInt5[i] = FirstInt5[i] + SecondInt5[i];

}

MAP: Apply the operator successively
on each element of the input vector(s)

element[i] .element’[i]

MAP: Apply the operator successively
on each element of the input vector(s)

element[i] .element’[i]

Size of the input vectorSize of the input vector

67

06/10/2010 p133 Master 2 – Critical System – Synchronous programming – David LESENS

Fold

InputInt

FirstInt5

FoldInt

fold<<5>>
a

FoldInt = InputInt;
for (i = 0; i < 5; i++) {

FoldInt = FoldInt + FirstInt5[i];
}

FoldInt = InputInt;
for (i = 0; i < 5; i++) {

FoldInt = FoldInt + FirstInt5[i];
}

First element of the iterationFirst element of the iteration

FOLD: Apply recursively the operator on input vector
element[i] .element[i+1]

FOLD: Apply recursivelythe operator on input vector
element[i] .element[i+1]

06/10/2010 p134 Master 2 – Critical System – Synchronous programming – David LESENS

Mapfold

MapFold1Int = InputInt;
for (i = 0; i < 5; i++) {

add_2_ArrayPackage(MapFold1Int, FirstInt5[i],
&MapFold1Int, &MapFold2Int[i]);

}

MapFold1Int = InputInt;
for (i = 0; i < 5; i++) {

add_2_ArrayPackage(MapFold1Int, FirstInt5[i],
&MapFold1Int, &MapFold2Int[i]);

}

Nodes used with a mapfold iterator should duplicate their output
We obtain both results at the same time

Nodes used with a mapfold iterator should duplicate their output
We obtain both results at the same time

Operator add_2Operator add_2

sum1

sum2Input2

Input1

sum2

68

06/10/2010 p135 Master 2 – Critical System – Synchronous programming – David LESENS

Mapi = Map with iterator as input

MapiInt5
FirstInt5

mapi<<5>>

i

for (i = 0; i < 5; i++) {
MapiInt5[i] = i + FirstInt5[i];

}

for (i = 0; i < 5; i++) {
MapiInt5[i] = i + FirstInt5[i];

}

The index of the iteration
is the first argument of the node

69

06/10/2010 p137 Master 2 – Critical System – Synchronous programming – David LESENS

Operator addOperator add

Mapw / Foldw = Partial operators

�Capability to stop an iteration on a Boolean
condition computed by the operator

10

condition

sum

Input2

Input1 The iteration can be stoppedThe iteration can be stopped

As soon as the condition is false, the iteration is toppedAs soon as the condition is false, the iteration is topped

06/10/2010 p138 Master 2 – Critical System – Synchronous programming – David LESENS

Mapw = Map partial operator

MapwInt5

MapwExitIndexInt164

add

4

mapw<<5>>

SecondInt5

FirstInt5

ConditionBool

MapwExitIndexInt = 0;
for (i = 0; i < 5; i++) {
if (ConditionBool) {
add(FirstInt5[i], SecondInt5[i], &ConditionBool, &MapwInt5[i]);
MapwExitIndexInt = i + 1;

} else { MapwInt5[i] = 4; } }

MapwExitIndexInt = 0;
for (i = 0; i < 5; i++) {
if (ConditionBool) {
add(FirstInt5[i], SecondInt5[i], &ConditionBool, &MapwInt5[i]);
MapwExitIndexInt = i + 1;

} else { MapwInt5[i] = 4; } }

It is recommended to not use this operator (WCET)

The iteration can be stopped

71

06/10/2010 p141 Master 2 – Critical System – Synchronous programming – David LESENS

Foldwi = Foldi + Foldw

InputInt
FoldwiInt5

FoldwiExitIndexInt

ConditionBool

180

add

foldwi<<5>>

i
a

FoldwiInt5 = InputInt; tmp = ConditionBool;
for (i = 0; i < 5; i++) {
if (ConditionBool) { break; }
add(i, FoldwiInt5, & ConditionBool, &tmp);
FoldwiInt5 = tmp;

}
FoldwiExitIndexInt = i;

FoldwiInt5 = InputInt; tmp = ConditionBool;
for (i = 0; i < 5; i++) {
if (ConditionBool) { break; }
add(i, FoldwiInt5, & ConditionBool, &tmp);
FoldwiInt5 = tmp;

}
FoldwiExitIndexInt = i;

The input flow is the iteratorThe input flow is the iterator

The iteration can be stoppedThe iteration can be stopped

06/10/2010 p142 Master 2 – Critical System – Synchronous programming – David LESENS

Iteration summary

�Map = Successive application
�Fold = Recursive application

�Mapfold = Map + Fold
�Mapi = Map with iterator as input
�Foldi = Fold with iterator as input
�Mapw = Map partial operator

�Mapwi = Mapi + Mapw
�Foldw = Fold partial operator
�Foldwi = Foldi + Foldw

72

06/10/2010 p143 Master 2 – Critical System – Synchronous programming – David LESENS

Example 1

Without loop

With loop

06/10/2010 p144 Master 2 – Critical System – Synchronous programming – David LESENS

Example 2: cross product

Compute
vector norm

Compute cross product

Compute scalar
product

73

06/10/2010 p145 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

06/10/2010 p146 Master 2 – Critical System – Synchronous programming – David LESENS

Sensors
�Sensor: Global system input

commanded_heater

heater

aimed_temperature

temperature

SensorSensor

Input temperature
Output heater

Input temperature
Output heater

extern _int aimed_temperature__ProbePackage;extern _int aimed_temperature__ProbePackage;

74

06/10/2010 p147 Master 2 – Critical System – Synchronous programming – David LESENS

Probes
�Probe: Global system output

commanded_heater

heater

aimed_temperature

temperature

ProbeProbe

typedef struct {/* context */
_bool heater; /* outputs */
_bool commanded_heater; /* probes */
} C_controller__ProbePackage;

typedef struct {/* context */
_bool heater; /* outputs */
_bool commanded_heater; /* probes */
} C_controller__ProbePackage;

06/10/2010 p148 Master 2 – Critical System – Synchronous programming – David LESENS

Overview
�Synchronous model �

� Introduction to the Scade language �

�Editing a Scade model �

�Activation conditions �

�Automata �

�Arrays �

� Iterations �

�Global flows: Sensors and probes �

�Genericity �

75

06/10/2010 p149 Master 2 – Critical System – Synchronous programming – David LESENS

Generic operator definition

Output

Input 'Targ

'Tsquare_out

TypeName

numeric'T

Generic TypeName

GenericSquareGenericSquare

square_outarg

SpecializationSpecialization

2

GenericSquare

1

GenericSquare

squarereal

squareInt

argReal

argInt

Definition of a generic
numeric type

Definition of a generic
numeric type

06/10/2010 p150 Master 2 – Critical System – Synchronous programming – David LESENS

Generic operator instantiation

int GenericSquare_int (int arg) {
int square_out;
square_out = arg * arg;
return square_out;

}

int GenericSquare_int (int arg) {
int square_out;
square_out = arg * arg;
return square_out;

}

real GenericSquare_real (real arg) {
real square_out;
square_out = arg * arg;
return square_out;

}

real GenericSquare_real (real arg) {
real square_out;
square_out = arg * arg;
return square_out;

}

void Specialization(int argInt; real argReal;
int squareInt; real squarereal;) {

*squareReal = GenericSquare_real (argReal);
*squareInt = GenericSquare_int (argInt);
}

void Specialization(int argInt; real argReal;
int squareInt; real squarereal;) {

*squareReal = GenericSquare_real (argReal);
*squareInt = GenericSquare_int (argInt);
}

76

06/10/2010 p151 Master 2 – Critical System – Synchronous programming – David LESENS

Definition of parameters

Definition of a generic
size (“parameter”)

Definition of a generic
size (“parameter”)

06/10/2010 p152 Master 2 – Critical System – Synchronous programming – David LESENS

Parameter instantiation

REAL_RESULT = 0.0;
for (i = 0; i < 3; i++) {

REAL_RESULT = REAL_RESULT + (*LEFT)[i] * (*RIGHT)[i];
}
return REAL_RESULT;

REAL_RESULT = 0.0;
for (i = 0; i < 3; i++) {

REAL_RESULT = REAL_RESULT + (*LEFT)[i] * (*RIGHT)[i];
}
return REAL_RESULT;

78

06/10/2010 p155 Master 2 – Critical System – Synchronous programming – David LESENS

Semantics verification (1/2)
Semantics of a SCADE model
� Syntax

� Typing verification
� Types compatibility

� Example: Integer ≠ real

� Non uninitialized variables
� Temporal causality

�…

06/10/2010 p156 Master 2 – Critical System – Synchronous programming – David LESENS

Temporal causality
SCADE is an equational language
�The evaluation order depends only on data flows

x = y;
y = z;

x = y;
y = z;
z = x;

“y = z” evaluated first
“x = y” evaluated secondly

Impossible computation of the evaluation order
“x = y = z = x = …”

Causality problem

79

06/10/2010 p157 Master 2 – Critical System – Synchronous programming – David LESENS

Semantics verification (2/2)
A SCADE model with a correct semantics is:
� Complete

� Consistent
� Implementable
� The good properties of a specification
� “Semantics check” to be systematically performed

But does the software behave as expected?

06/10/2010 p158 Master 2 – Critical System – Synchronous programming – David LESENS

80

06/10/2010 p159 Master 2 – Critical System – Synchronous programming – David LESENS

Compare the observed behaviour

with the expected behaviour

�Several levels of test
� Unitary / integration / validation / system qualification

� Host / target

� Real equipment / simulator

� “White” box / “Black” box

What is testing?

At code or
model level

06/10/2010 p160 Master 2 – Critical System – Synchronous programming – David LESENS

Objectives of unitary tests
� Robustness

� Absence of “runtime error”

�Functional validity
� Comparison with the expected results

� Contractual objectives
� Coverage

� Intuitively satisfactory

� Measurable
� But not a proof of exhaustiveness

81

06/10/2010 p161 Master 2 – Critical System – Synchronous programming – David LESENS

Unitary tests: Coverage

Procedure f(x : in real; y: in real; z : out real)
if (x > 1.0) or (x < -1.0) then

z := y/x;
else

z := y;
if z < 2.0 then

z = 2.0;

Procedure f(x : in real; y: in real; z : out real)
if (x > 1.0) or (x < -1.0) then

z := y/x;
else

z := y;
if z < 2.0 then

z = 2.0;

Coverage
� branch (x=2.0, y=6.0), (x=-1.0,y=1.0)
� decision + (x=-2, y=3.0)

� path + (x=2.0, y=1.0), (x=0.5,y=2.0)

06/10/2010 p162 Master 2 – Critical System – Synchronous programming – David LESENS

Coverage of a SCADE model

+
+0

Counter

inc

PRE

+
+

1

2

= true

= false
Warning

Both branches
are executed

whatever
the value of “inc”

82

06/10/2010 p163 Master 2 – Critical System – Synchronous programming – David LESENS

Integration test

Module A Module B
Validated by

Unitary Tests

Validation of interfaces in white box

Module A Module B

Do they work together?

y = f(x1, x2) ou
y = f(x2, x1)

06/10/2010 p164 Master 2 – Critical System – Synchronous programming – David LESENS

Limit of the white box approach

�The presence of a spy may modify the real time
behaviour

�What happens if the debugger / simulator has … a
bug?

84

06/10/2010 p167 Master 2 – Critical System – Synchronous programming – David LESENS

Concrete semantics

Possible execution

Test coverage

Tested execution OK

Error
states

Software testing

Program testing can be
used to show the presence
of bugs, but never to show
their absence!

Edgser W. Dijkstra

Non detected
failure

06/10/2010 p168 Master 2 – Critical System – Synchronous programming – David LESENS

Abstract semantics

Computable and sound
abstraction

Error
statesConcrete semantics

Non computable

Principle of the proof

In order to reason or
compute about a
complex system, some
information must be lost

Patrick Cousot

Verified

85

06/10/2010 p169 Master 2 – Critical System – Synchronous programming – David LESENS

Abstract semantics

Computable but
incomplete

Concrete semantics Error
states

Warning
False alarms!

Proof limitation

06/10/2010 p170 Master 2 – Critical System – Synchronous programming – David LESENS

int a[1000];

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000–i; j++) {

// 0 <= i <= 999

// 0 <= j <= 999

a[i+j] = 0;

}

}

Warning

i

j0

999

999

Example (1)

Non conclusive

Error
states

86

06/10/2010 p171 Master 2 – Critical System – Synchronous programming – David LESENS

i

j0

999

999Safe

int a[1000];

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000–i; j++) {

// 0 <= i and 0 <= j

// i+j <= 999

a[i+j] = 0;

}

}

Example (2)

Conclusive

Error
states

06/10/2010 p172 Master 2 – Critical System – Synchronous programming – David LESENS

Safety et liveness properties
� Safety
“Bad” things never happen

� Liveness
Some thing “good” will eventually happen in the

future

Abstract semantics

Concrete semantics

State to be
reached

Error
states

The proof
tool of

SCADE
can not
prove

liveness
properties

87

06/10/2010 p173 Master 2 – Critical System – Synchronous programming – David LESENS

Interest of the liveness properties
� “Liveness” property / “timed” property

� Example: if an error is detected, the software shall raise an
alarm toward the user

� Liveness: the alarm will mandatorily be raised (one day or another)

But when?
� Not acceptable for a critical real time piece of software

� Timed property: the alarm will mandatorily be raised 1
second after the failure occurence

� Safety property

06/10/2010 p174 Master 2 – Critical System – Synchronous programming – David LESENS

Formal proof
� “Mathematical” exhaustive demonstration that a

piece of software/code satisfied a property

� Rarely the case!

A piece software generally satisfies a property only in
a correct environment

88

06/10/2010 p175 Master 2 – Critical System – Synchronous programming – David LESENS

The software is part of a complex system

Vehicle

On boardOn board
ComputerComputer

On boardOn board
ComputerComputer

ProcessorProcessor
SoftwareSoftwareEquipmentEquipmentEquipmentEquipmentEquipmentEquipment

BusBus

E
nv

iro
nm

en
t

E
nv

iro
nm

en
t

06/10/2010 p176 Master 2 – Critical System – Synchronous programming – David LESENS

Formal proof principles
�Software under validation
�Properties to be satisfied

�Software environment

(□□□□ correct environment) ∧ software ⇒ properties

� Environment in open or close loop

89

06/10/2010 p177 Master 2 – Critical System – Synchronous programming – David LESENS

Expression of properties
Notion of observer
�An observer is a software observing the software

under validation and returning “true” as long as the
property is satisfied

� Observation of the software inputs
� Observation of the software outputs

� Idem for the environment properties

06/10/2010 p178 Master 2 – Critical System – Synchronous programming – David LESENS

Observers in SCADE

Software
under

validation

Inputs Outputs

Observer
of the

property

ok

Environment

FBY

� Use for testing (oracle)
� Use by SCADE proof tool

90

06/10/2010 p179 Master 2 – Critical System – Synchronous programming – David LESENS

Non deterministic environment (1/2)
The software environment is generally not fully

deterministic
� Human action

� Failure

� …

� Non deterministic environment

But SCADE is a deterministic language!

06/10/2010 p180 Master 2 – Critical System – Synchronous programming – David LESENS

Non deterministic environment (2/2)
The non determinism is modelled by an additional

input

Example: Failure occurrence

Environment System
Failure

91

06/10/2010 p181 Master 2 – Critical System – Synchronous programming – David LESENS

Assertion
An assertion allows to restrict an environment “too

much” non deterministic

Example:
� Input “gf” models a gyroscope failure

� Input “tf” models a thruster failureune panne d’une tuyère
� To develop a “one fault tolerant” system

Hypothesis: assert#(gf, tf)

06/10/2010 p182 Master 2 – Critical System – Synchronous programming – David LESENS

The End

