
Theme 1: Abstract Reasoning

Lecture 3: Inductive Correctness Proofs

Matthieu Sozeau

Inria & Paris Diderot University, Paris 7

October 2014

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 1 / 23

Implementation vs. Specification

Assume we want to define

f : Dom→ CoDom

Consider an abstract specification

Spec f (In,Out) ⊆ Dom × CoDom

Let Impl f be an implementation of f (e.g., as a recursive function)

The implementation Impl f satisfies the specification Spec f iff:

∀In ∈ Dom. ∀Out ∈ CoDom. (Impl f (In) = Out) =⇒ Spec f (In,Out)

Or equivalently:

∀In ∈ Dom =⇒ Spec f (In, Impl f (In))

Correctness is always defined with respect to a given specification!

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 2 / 23

Example: The Append function

Type:
Append : List[?]× List[?]→ List[?]

Specification:

Spec Append(`1, `2, `) =
|`| = |`1|+ |`2| ∧
∀i ∈ Nat. (0 ≤ i < |`1|)⇒ `[i] = `1[i] ∧
∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `[|`1|+ i] = `2[i]

Implementation:

[]@` = `

(a · `1)@`2 = a · (`1@`2)

Correctness:

∀`1, `2, `. (`1@`2 = `) =⇒ Spec Append(`1, `2, `)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 3 / 23

Correctness proof: Induction

Case `1 = []: ` = []@`2 = `2.

(|`| = 0 + |`2|) ∧
(∀i . 0 ≤ i < 0⇒ ...) ∧
(∀i . 0 ≤ i < |`2| ⇒ `[0 + i] = `2[i])

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 4 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|
We have (by definition of the At operator):

1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 5 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) =

Sort(a · `) =

How to sort a · ` if we can sort ` ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 6 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) = []

Sort(a · `) = Insert(a,Sort(`))

We need to insert a in the sorted list corresponding to `.

What is the formal specification of Insert?

Type:
Insert : ?× List[?]→ List[?]

Input-Output relation:

Spec Insert(a, `, `′) =
Ordered(`)⇒

�
Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`))

�

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 7 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) =

Sort(a · `) =

If the output is of the form e · `′, what is e ? and how to obtain `′ ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 8 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (m, `m) = Extract min(a, `) in m · Sort(`m)

Extract the minimal element m of `, and sort the rest of the list `m.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 9 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (m, `m) = Extract min(a, `) in m · Sort(`m)

Extract the minimal element m of `, and sort the rest of the list `m.

Specification of Extract min:

I Type: Extract min : ?× List[?]→ ?× List[?]

I Input-Output relation:

Spec Extract min(x , `1,m, `2) =

Is in(m, x · `1) ∧
∀a ∈ ?. Is in(a, x · `1)⇒ m ≤ a ∧
Ms(x · `1) = Sg(m)]Ms(`2)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 10 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) =

Sort(a · `) =

Assume that when a is at its place in the output, it has `left and `right

to its left and right, respectively. How to compute `left and `right?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 11 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (`1, `2) = split (a, `) in Sort(`1)@(a · Sort(`2))

Split ` into 2 lists containing the elements smaller and greater than a.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 12 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (`1, `2) = split (a, `) in Sort(`1)@(a · Sort(`2))

Split ` into 2 lists containing the elements smaller and greater than a.

Specification of Split:

I Type: Split : ?× List[?]→ List[?]× List[?]

I Input-Output relation:

Spec Split(a, `, `1, `2) =

Ms(`) = Ms(`1)]Ms(`2) ∧
∀e ∈ ?. ((Is In(e, `1)⇒ e ≤ a) ∧ (Is In(e, `2)⇒ a < e))

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 13 / 23

Proving correctness of the Recursive Insertion Sort
Consider the implementation:

Ins Sort([]) = []

Ins Sort(a · `) = Insert(a, Ins Sort(`))

Assume that Insert is correct w.r.t. its specification:

∀a ∈ ?. ∀`, `′ ∈ List[?] . Insert(a, `) = `′ =⇒ Spec Insert(a, `, `′)

where
Spec Insert(a, `, `′) =
Ordered(`)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`)))

and prove that:

∀`, `′ ∈ List[?] . (Ins Sort(`) = `′) =⇒ Spec Sort(`, `′)

where
Spec Sort(`, `′) =
∀i , j ,∈ Nat. (0 ≤ i < j < |`′| ⇒ `′[i] ≤ `′[j]) ∧

Ms(`) = Ms(`′)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 14 / 23

Proof

Case ` = []: Trivial.

Case ` = a · `1: We have `′ = Ins Sort(`) = Insert(a, Ins Sort(`1)).

Let `′1 = Ins Sort(`1).

Induction hypothesis: Ordered(`′1) ∧Ms(`1) = Ms(`′1).

We assume Insert correct w.r.t. its specification:

Spec Insert(a, `′1, `
′) =

Ordered(`′1)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`′1)))

Since we have Ordered(`′1) by Ind. Hyp., then the following holds:

Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`′1))

We have Ms(`) = Sg(a)]Ms(`1) = Sg(a)]Ms(`′1) = Ms(`′).

Then, we obtain Ordered(`′) ∧Ms(`) = Ms(`′).

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 15 / 23

Recursive Insertion

Type:

Insert : ?× List[?]→ List[?]

Input-Output specification:

Spec Insert(a, `, `′) =
Ordered(`)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`)))

Recursive implementation:

Insert(a, []) = a · []
Insert(a, b · `) = if a ≤ b then a · (b · `)

else b · (Insert(a, `))

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 16 / 23

Recursive Insertion: Correctness proof

left as an exercise ...

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 17 / 23

Correctness of the Quick sort

Consider the sorting function:

qsort([]) = []

qsort(a · `) = let (`1, `2) = split (a, `) in

qsort(`1)@(a · qsort(`2))

Prove that:

∀`, `′. (qsort(`) = `′) =⇒ Spec Sort(`, `′)

We need to assume that the two recursive calls are correct.

What is the proof principle which allows that ?

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 18 / 23

Well founded relations

Let E be a set, and let ≺⊆ E × E a binary relation over E .

The relation ≺ is well founded if it has no infinite descending chains,
i.e., no sequences of the form

e0 � e1 � · · · � ei � · · ·

(E ,≺) is said to be a well founded set (WFS for short).

Thm: ≺ is well founded iff

∀F ⊆ E . F 6= ∅ ⇒ (∃e ∈ F . ∀e ′ ∈ F . e ′ 6≺ e)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 19 / 23

Well founded relations: Examples

(N, <) is a WFS.

(Z, <) is not a WFS.

(R>0, <) is not a WFS.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 20 / 23

Noetherian Induction

Let (E ,≺) be a WFS, and let ρ : D → E .

Let ≺ρ⊆ D × D be the relation such that:

x ≺ρ y ⇐⇒ ρ(x) ≺ ρ(y)

Induction rule:

∀x ∈ D.
�
(∀y . y ≺ρ x ⇒ P(y))⇒ P(x)

�
∀x ∈ D. P(x)

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 21 / 23

Correctness of the Quick sort (cont.)

Consider the WFS (N, <) and the function ρ : List[?]→ N such that

∀` ∈ List[?]. ρ(`) = |`|

The rest of the proof is left as an exercise ...

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 22 / 23

Conclusion

Specifications are abstract definitions of the effect of functions.

No implementation details are imposed. Several implementations can
be provided and proved correct w.r.t. an abstract specification.

Logic is a natural framework for abstract description of input-output
relations

Abstraction allows modular design:
I The user of a function needs only to know its specification. This allows

to separate issues.
I The implementor must ensure the satisfaction of the specification:

He/she must prove that its implementation satisfies the required
satisfaction.

I It is possible to implement a function and prove its correctness w.r.t.
to its specification, assuming that the functions it uses (in external
modules) are correct w.r.t. their own specifications.

M. Sozeau (Inria & UP7) L3: Inductive Correctness Proofs October 2014 23 / 23

